A smart and rapid colorimetric method for the detection of codeine sulphate, using unmodified gold nanoprobe

Driven by the need to detect narcotics, we designed a “smart” system for the rapid detection and quantification of codeine sulphate levels using a smartphone, which allows simple, portable, on-spot, rapid and ultrasensitive nanoaggregation colorimetric detection (a lower detection limit of 0.9 μM) using the unique properties of citrate-stabilized gold nanoparticles (AuNPs) as a probe.

[1]  Gary B. Braun,et al.  Generalized Approach to SERS-Active Nanomaterials via Controlled Nanoparticle Linking, Polymer Encapsulation, and Small-Molecule Infusion , 2009 .

[2]  R. Heltsley,et al.  Urine testing for norcodeine, norhydrocodone, and noroxycodone facilitates interpretation and reduces false negatives. , 2010, Forensic science international.

[3]  M. Freiermuth,et al.  Determination of morphine and codeine in plasma by HPLC following solid phase extraction. , 1997, Journal of pharmaceutical and biomedical analysis.

[4]  Guohua Jiang,et al.  Studies on the preparation and characterization of gold nanoparticles protected by dendrons , 2007 .

[5]  Mário César Ugulino Araújo,et al.  Digital image-based titrations. , 2006, Analytica chimica acta.

[6]  G. Bazan,et al.  Chemically patterned microspheres for controlled nanoparticle assembly in the construction of SERS hot spots. , 2007, Journal of the American Chemical Society.

[7]  S. Menon,et al.  Melamine modified gold nanoprobe for "on-spot" colorimetric recognition of clonazepam from biological specimens. , 2013, The Analyst.

[8]  Paulo Henrique Gonçalves Dias Diniz,et al.  Digital image-based flame emission spectrometry. , 2009, Talanta.

[9]  C. V. King,et al.  Post-mortem drug analyses in bone and bone marrow. , 2000, Therapeutic drug monitoring.

[10]  D. Crouch Oral fluid collection: the neglected variable in oral fluid testing. , 2005, Forensic science international.

[11]  S. Menon,et al.  A novel nanoaggregation detection technique of TNT using selective and ultrasensitive nanocurcumin as a probe. , 2012, The Analyst.

[12]  David A. Liñán,et al.  Chemometric interpretation of digital image colorimetry. Application for titanium determination in plastics , 2010 .

[13]  Dihua Shangguan,et al.  A label-free electrochemical biosensor based on a DNA aptamer against codeine. , 2013, Analytica chimica acta.

[14]  Weihong Tan,et al.  Aptamer-modified gold nanoparticles for colorimetric determination of platelet-derived growth factors and their receptors. , 2005, Analytical chemistry.

[15]  R. Oprean,et al.  TLC-UV densitometric and GC-MSD methods for simultaneous quantification of morphine and codeine in poppy capsules. , 1998, Journal of pharmaceutical and biomedical analysis.

[16]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[17]  F. Caruso,et al.  Spontaneous phase transfer of nanoparticulate metals from organic to aqueous media. , 2001, Angewandte Chemie.

[18]  T. Kolev,et al.  Linear-dichroic infrared spectral (IR-LD) analysis of codeine and its derivatives. , 2007, Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy.

[19]  S. Menon,et al.  Rapid colorimetric detection of sulfide using calix[4]arene modified gold nanoparticles as a probe , 2012 .

[20]  Chih-Ching Huang,et al.  Colorimetric determination of urinary adenosine using aptamer-modified gold nanoparticles. , 2008, Biosensors & bioelectronics.

[21]  Laurent Galichet,et al.  Clarke's analysis of drugs and poisons in pharmaceuticals, body fluids and postmortem material , 2004 .

[22]  Haidong Yu,et al.  A general low-temperature route for large-scale fabrication of highly oriented ZnO nanorod/nanotube arrays. , 2005, Journal of the American Chemical Society.

[23]  A. Jenkins,et al.  Detection of Drugs of Forensic Importance in Postmortem Bone , 2009, The American journal of forensic medicine and pathology.

[24]  J. Watterson,et al.  Relative distribution of ketamine and norketamine in skeletal tissues following various periods of decomposition. , 2011, Journal of analytical toxicology.

[25]  Niamh Nic Daeid,et al.  Digital image-based colourimetric [corrected] tests for amphetamine and methylamphetamine. , 2011, Drug testing and analysis.

[26]  W. Smyth,et al.  A critical evaluation of the application of capillary electrophoresis to the detection and determination of 1,4‐benzodiazepine tranquilizers in formulations and body materials , 1998, Electrophoresis.

[27]  Anish Kumar,et al.  Potassium ion recognition by facile dithiocarbamate assembly of benzo-15-crown-5-gold nanoparticles. , 2009, Chemical communications.

[28]  E. Coronado,et al.  The Optical Properties of Metal Nanoparticles: The Influence of Size, Shape, and Dielectric Environment , 2003 .

[29]  G. Patel,et al.  Recognition of lysine, arginine and histidine by novel p-sulfonatocalix[4]arene thiol functionalized gold nanoparticles in aqueous solution. , 2009, Chemical communications.

[30]  M. Peat Advances in forensic toxicology. , 1998, Clinics in laboratory medicine.

[31]  A. Jenkins,et al.  Postmortem tissue distribution of olanzapine and citalopram in a drug intoxication. , 2005, Journal of forensic sciences.

[32]  T. Noguchi,et al.  Drug analyses of skeletonizing remains. , 1978, Journal of forensic sciences.

[33]  J. Watterson,et al.  Detection of Acute Diazepam Exposure in Bone and Marrow: Influence of Tissue Type and the Dose‐Death Interval on Sensitivity of Detection by ELISA with Liquid Chromatography Tandem Mass Spectrometry Confirmation * , 2009, Journal of forensic sciences.

[34]  Kenji Iwase,et al.  Tristimulus colorimetry using a digital still camera and its application to determination of iron and residual chlorine in water samples. , 2006, Analytical sciences : the international journal of the Japan Society for Analytical Chemistry.

[35]  N. Thanh,et al.  Functionalisation of nanoparticles for biomedical applications , 2010 .

[36]  R. Braithwaite,et al.  A rapid GC-MS method for the determination of dihydrocodeine, codeine, norcodeine, morphine, normorphine and 6-MAM in urine. , 2002, Forensic science international.

[37]  Zhongpin Zhang,et al.  Near-room-temperature production of diameter-tunable ZnO nanorod arrays through natural oxidation of zinc metal. , 2005, Chemistry.

[38]  F. Moriya,et al.  Detection of abused drugs in human blood by using the on-site drug-screening device Oratect® III. , 2014, Legal medicine.

[39]  Aree Choodum,et al.  Rapid quantitative colourimetric tests for trinitrotoluene (TNT) in soil. , 2012, Forensic science international.

[40]  Zhongpin Zhang,et al.  Aggregation-driven growth of well-oriented ZnO nanorod arrays , 2006 .

[41]  Dermot Diamond,et al.  Digital imaging as a detector for generic analytical measurements , 2000 .

[42]  Benjamin G. Janesko,et al.  Adenine− and Adenosine Monophosphate (AMP)−Gold Binding Interactions Studied by Surface-Enhanced Raman and Infrared Spectroscopies , 2009 .

[43]  R. Compton,et al.  Sensitive electrochemical detection of arsenic (III) using gold nanoparticle modified carbon nanotubes via anodic stripping voltammetry. , 2008, Analytica chimica acta.

[44]  J. Watterson,et al.  Utility of Immunoassay in Drug Screening in Skeletal Tissues: Sampling Considerations in Detection of Ketamine Exposure in Femoral Bone and Bone Marrow Following Acute Administration Using ELISA * , 2008, Journal of forensic sciences.

[45]  D. Lu,et al.  Facile phase transfer of hydrophobic nanoparticles with poly(ethylene glycol) grafted hyperbranched poly(amido amine) , 2009, Nanotechnology.

[46]  M. S. Chen,et al.  The Structure of Catalytically Active Gold on Titania , 2004, Science.

[47]  Chih-Ching Huang,et al.  Detection of mercury(II) based on Hg2+ -DNA complexes inducing the aggregation of gold nanoparticles. , 2008, Chemical communications.

[48]  Niamh Nic Daeid,et al.  Rapid and semi-quantitative presumptive tests for opiate drugs. , 2011, Talanta.

[49]  Haiping Sun,et al.  Three‐Dimensionally Oriented Aggregation of a Few Hundred Nanoparticles into Monocrystalline Architectures , 2005, Advanced Materials.

[50]  A. Safavi,et al.  Single-step calibration, prediction and real samples data acquisition for artificial neural network using a CCD camera. , 2004, Talanta.

[51]  Niamh Nic Daeid,et al.  Using the iPhone as a device for a rapid quantitative analysis of trinitrotoluene in soil. , 2013, Talanta.

[52]  N. Raikos,et al.  Determination of opiates in postmortem bone and bone marrow. , 2001, Forensic science international.

[53]  Hong Chi,et al.  A simple, reliable and sensitive colorimetric visualization of melamine in milk by unmodified gold nanoparticles. , 2010, The Analyst.