Deep and high-resolution three-dimensional tracking of single particles using nonlinear and multiplexed illumination

[1]  Akihiro Kusumi,et al.  Tracking single molecules at work in living cells. , 2014, Nature chemical biology.

[2]  Matteo Pasquali,et al.  High-resolution mapping of intracellular fluctuations using carbon nanotubes , 2014, Science.

[3]  Quan Wang,et al.  Single-molecule motions enable direct visualization of biomolecular interactions in solution , 2014, Nature Methods.

[4]  L. Davis,et al.  Three-dimensional tracking of a single fluorescent nanoparticle using four-focus excitation in a confocal microscope. , 2014, Optics express.

[5]  Andrew K. Dunn,et al.  3D single-molecule tracking using one- and two-photon excitation microscopy , 2014, Photonics West - Biomedical Optics.

[6]  Haw Yang,et al.  Multi-resolution 3D visualization of the early stages of cellular uptake of peptide-coated nanoparticles. , 2014, Nature nanotechnology.

[7]  Hye Yoon Park,et al.  Visualization of Dynamics of Single Endogenous mRNA Labeled in Live Mouse , 2014, Science.

[8]  Sean C. Warren,et al.  Rapid Global Fitting of Large Fluorescence Lifetime Imaging Microscopy Datasets , 2013, PloS one.

[9]  Enrico Gratton,et al.  Fast spatiotemporal correlation spectroscopy to determine protein lateral diffusion laws in live cell membranes , 2013, Proceedings of the National Academy of Sciences.

[10]  D. Toomre,et al.  Adaptive optics enables three-dimensional single particle tracking at the sub-millisecond scale , 2013 .

[11]  X. Xie,et al.  Single Molecule Imaging of Transcription Factor Binding to DNA in Live Mammalian Cells , 2013, Nature Methods.

[12]  T. Oosterkamp,et al.  Parallel nanometric 3D tracking of intracellular gold nanorods using multifocal two-photon microscopy. , 2013, Nano letters.

[13]  Ulrich Kubitscheck,et al.  Dynamic three-dimensional tracking of single fluorescent nanoparticles deep inside living tissue. , 2012, Optics express.

[14]  F. Aguet,et al.  The First Five Seconds in the Life of a Clathrin-Coated Pit , 2012, Cell.

[15]  Estelle Crozat,et al.  Single-molecule imaging of DNA curtains reveals mechanisms of KOPS sequence targeting by the DNA translocase FtsK , 2012, Proceedings of the National Academy of Sciences.

[16]  David A. Williams,et al.  Diffusion Dynamics of Glycine Receptors Revealed by Single – Quantum Dot Tracking , 2012 .

[17]  Erik E. Griffin,et al.  Regulation of the MEX-5 Gradient by a Spatially Segregated Kinase/Phosphatase Cycle , 2011, Cell.

[18]  X. Zhuang,et al.  Fast three-dimensional super-resolution imaging of live cells , 2011, Nature Methods.

[19]  A. Cheng,et al.  simultaneous two-photon calcium imaging at different depths with spatiotemporal multiplexing , 2011 .

[20]  M. E. Phipps,et al.  Time-resolved three-dimensional molecular tracking in live cells. , 2010, Nano letters.

[21]  J. Bewersdorf,et al.  Three-dimensional tracking of single fluorescent particles with submillisecond temporal resolution. , 2010, Nano letters.

[22]  Enrico Gratton,et al.  In vivo pair correlation analysis of EGFP intranuclear diffusion reveals DNA-dependent molecular flow , 2010, Proceedings of the National Academy of Sciences.

[23]  Alan R. Lowe,et al.  Selectivity Mechanism of the Nuclear Pore Complex Characterized by Single Cargo Tracking , 2010, Nature.

[24]  Christian Eggeling,et al.  Fast molecular tracking maps nanoscale dynamics of plasma membrane lipids , 2010, Proceedings of the National Academy of Sciences.

[25]  W. E. Moerner,et al.  Localizing and tracking single nanoscale emitters in three dimensions with high spatiotemporal resolution using a double-helix point spread function. , 2010, Nano letters.

[26]  E. Gratton,et al.  Real-time nanomicroscopy via three-dimensional single-particle tracking. , 2009, Chemphyschem : a European journal of chemical physics and physical chemistry.

[27]  Vasan Venugopalan,et al.  Amplitude and phase of tightly focused laser beams in turbid media. , 2009, Physical review letters.

[28]  Denis Wirtz,et al.  Particle-tracking microrheology of living cells: principles and applications. , 2009, Annual review of biophysics.

[29]  Juergen Friedrich,et al.  Spheroid-based drug screen: considerations and practical approach , 2009, Nature Protocols.

[30]  James H Werner,et al.  Confocal, three-dimensional tracking of individual quantum dots in high-background environments. , 2008, Analytical chemistry.

[31]  X. Zhuang,et al.  Whole cell 3D STORM reveals interactions between cellular structures with nanometer-scale resolution , 2008, Nature Methods.

[32]  P. P. Di Fiore,et al.  Clathrin-mediated internalization is essential for sustained EGFR signaling but dispensable for degradation. , 2008, Developmental cell.

[33]  K. Lidke,et al.  Actin restricts FcɛRI diffusion and facilitates antigen-induced receptor immobilization , 2008, Nature Cell Biology.

[34]  Haw Yang,et al.  Progress in single-molecule tracking spectroscopy , 2008 .

[35]  Eric Betzig,et al.  High-speed, low-photodamage nonlinear imaging using passive pulse splitters , 2008, Nature Methods.

[36]  Hideo Mabuchi,et al.  Quantum dot photon statistics measured by three-dimensional particle tracking. , 2007, Nano letters.

[37]  Haw Yang,et al.  Guiding a confocal microscope by single fluorescent nanoparticles. , 2007, Optics letters.

[38]  Sergio Fantini,et al.  Multifocal multiphoton microscopy based on multianode photomultiplier tubes. , 2007, Optics express.

[39]  C. Bräuchle,et al.  Cellular dynamics of EGF receptor-targeted synthetic viruses. , 2007, Molecular therapy : the journal of the American Society of Gene Therapy.

[40]  Michael Wahl,et al.  Dead-time effects in TCSPC data analysis , 2007, SPIE Optics + Optoelectronics.

[41]  E. Isacoff,et al.  Subunit counting in membrane-bound proteins , 2007, Nature Methods.

[42]  K. Sokolov,et al.  Two-photon luminescence imaging of cancer cells using molecularly targeted gold nanorods. , 2007, Nano letters.

[43]  Thomas Dertinger,et al.  Two-focus fluorescence correlation spectroscopy: a new tool for accurate and absolute diffusion measurements. , 2007, Chemphyschem : a European journal of chemical physics and physical chemistry.

[44]  S. Shorte,et al.  Quantitative four-dimensional tracking of cytoplasmic and nuclear HIV-1 complexes , 2006, Nature Methods.

[45]  Haw Yang,et al.  Confocal three dimensional tracking of a single nanoparticle with concurrent spectroscopic readouts , 2006 .

[46]  W. Denk,et al.  Deep tissue two-photon microscopy , 2005, Nature Methods.

[47]  Taekjip Ha,et al.  Repetitive shuttling of a motor protein on DNA , 2005, Nature.

[48]  Enrico Gratton,et al.  3-D particle tracking in a two-photon microscope: application to the study of molecular dynamics in cells. , 2005, Biophysical journal.

[49]  K. Berland,et al.  Observation volumes and {gamma}-factors in two-photon fluorescence fluctuation spectroscopy. , 2005, Biophysical journal.

[50]  Robert H Singer,et al.  Materials and Methods Som Text Figs. S1 to S8 References and Notes Dynamics of Single Mrnps in Nuclei of Living Cells , 2022 .

[51]  Enrico Gratton,et al.  Distance measurement by circular scanning of the excitation beam in the two‐photon microscope , 2004, Microscopy research and technique.

[52]  W. Webb,et al.  Lateral diffusion of membrane lipid-anchored probes before and after aggregation of cell surface IgE-receptors , 2003 .

[53]  Paul R. Selvin,et al.  Myosin V Walks Hand-Over-Hand: Single Fluorophore Imaging with 1.5-nm Localization , 2003, Science.

[54]  W. Webb,et al.  Focal volume optics and experimental artifacts in confocal fluorescence correlation spectroscopy. , 2002, Biophysical journal.

[55]  Akihiro Kusumi,et al.  Phospholipids undergo hop diffusion in compartmentalized cell membrane , 2002, The Journal of cell biology.

[56]  W. Webb,et al.  Precise nanometer localization analysis for individual fluorescent probes. , 2002, Biophysical journal.

[57]  C. Seidel,et al.  An experimental comparison of the maximum likelihood estimation and nonlinear least-squares fluorescence lifetime analysis of single molecules. , 2001, Analytical chemistry.

[58]  P. Schwille,et al.  Simultaneous two-photon excitation of distinct labels for dual-color fluorescence crosscorrelation analysis. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[59]  W. B. Caldwell,et al.  Single-molecule fluorescence spectroscopy of enzyme conformational dynamics and cleavage mechanism. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[60]  W. Webb,et al.  Two-Photon Fluorescence Excitation Cross Sections of Biomolecular Probes from 690 to 960 nm. , 1998, Applied optics.

[61]  Frederick E. Petry,et al.  Principles and Applications , 1997 .

[62]  K. Jacobson,et al.  Single-particle tracking: applications to membrane dynamics. , 1997, Annual review of biophysics and biomolecular structure.

[63]  Mason,et al.  Optical measurements of frequency-dependent linear viscoelastic moduli of complex fluids. , 1995, Physical review letters.

[64]  M. Sheetz,et al.  Tracking kinesin-driven movements with nanometre-scale precision , 1988, Nature.