Multi-phase passband balanced SSFP fMRI with 50ms sampling rate at 7Tesla enables high precision in resolving 100ms neuronal events.

[1]  Essa Yacoub,et al.  Variable flip angle 3D‐GRASE for high resolution fMRI at 7 tesla , 2016, Magnetic resonance in medicine.

[2]  Kawin Setsompop,et al.  Rapid brain MRI acquisition techniques at ultra‐high fields , 2016, NMR in biomedicine.

[3]  Lucy S. Petro,et al.  Contextual Feedback to Superficial Layers of V1 , 2015, Current Biology.

[4]  R. Goebel,et al.  High-Resolution Mapping of Myeloarchitecture In Vivo: Localization of Auditory Areas in the Human Brain. , 2015, Cerebral cortex.

[5]  Essa Yacoub,et al.  Sub-millimeter T2 weighted fMRI at 7 T: comparison of 3D-GRASE and 2D SE-EPI , 2015, Front. Neurosci..

[6]  Leonardo L. Gollo,et al.  Time-resolved resting-state brain networks , 2014, Proceedings of the National Academy of Sciences.

[7]  D. Attwell,et al.  Capillary pericytes regulate cerebral blood flow in health and disease , 2014, Nature.

[8]  Danny J. J. Wang,et al.  Multi-Phase Passband Cine SSFP: an fMRI technique with excellent spatiotemporal resolution at 7 Tesla , 2014 .

[9]  Steen Moeller,et al.  Advances in diffusion MRI acquisition and processing in the Human Connectome Project , 2013, NeuroImage.

[10]  Mark W. Woolrich,et al.  Resting-state fMRI in the Human Connectome Project , 2013, NeuroImage.

[11]  Kawin Setsompop,et al.  Ultra-fast MRI of the human brain with simultaneous multi-slice imaging. , 2013, Journal of magnetic resonance.

[12]  Markus Barth,et al.  An Investigation of RSN Frequency Spectra Using Ultra-Fast Generalized Inverse Imaging , 2013, Front. Hum. Neurosci..

[13]  Baxter P. Rogers,et al.  Measuring relative timings of brain activities using fMRI , 2013, NeuroImage.

[14]  Danny J. J. Wang,et al.  Comparison of SSFP and multiband EPI in functional MRI at 7 Tesla , 2013 .

[15]  Peter J. Koopmans,et al.  Whole brain, high resolution spin-echo resting state fMRI using PINS multiplexing at 7T , 2012, NeuroImage.

[16]  Karla L. Miller,et al.  FMRI using balanced steady-state free precession (SSFP) , 2012, NeuroImage.

[17]  Thomas Witzel,et al.  Ultrafast inverse imaging techniques for fMRI , 2012, NeuroImage.

[18]  Maxim Zaitsev,et al.  Single shot concentric shells trajectories for ultra fast fMRI , 2012, Magnetic resonance in medicine.

[19]  J. Polimeni,et al.  Blipped‐controlled aliasing in parallel imaging for simultaneous multislice echo planar imaging with reduced g‐factor penalty , 2012, Magnetic resonance in medicine.

[20]  K. Uğurbil,et al.  Layer-Specific fMRI Reflects Different Neuronal Computations at Different Depths in Human V1 , 2012, PloS one.

[21]  Peter J. Koopmans,et al.  Multi-echo fMRI of the cortical laminae in humans at 7T , 2011, NeuroImage.

[22]  W. W. Hansen,et al.  Nuclear Induction , 2011 .

[23]  John C Gore,et al.  Functional MRI and multivariate autoregressive models. , 2010, Magnetic resonance imaging.

[24]  Danny J. J. Wang,et al.  Unenhanced dynamic MR angiography: high spatial and temporal resolution by using true FISP-based spin tagging with alternating radiofrequency. , 2010, Radiology.

[25]  Steen Moeller,et al.  Multiband multislice GE‐EPI at 7 tesla, with 16‐fold acceleration using partial parallel imaging with application to high spatial and temporal whole‐brain fMRI , 2010, Magnetic resonance in medicine.

[26]  D. Attwell,et al.  Pericyte-Mediated Regulation of Capillary Diameter: A Component of Neurovascular Coupling in Health and Disease , 2010, Front. Neuroenerg..

[27]  Dwight G Nishimura,et al.  Full‐brain coverage and high‐resolution imaging capabilities of passband b‐SSFP fMRI at 3T , 2008, Magnetic resonance in medicine.

[28]  Stephen M. Smith,et al.  Signal and noise characteristics of SSFP FMRI: A comparison with GRE at multiple field strengths , 2007, NeuroImage.

[29]  Oliver Speck,et al.  MR-Encephalography: Fast multi-channel monitoring of brain physiology with magnetic resonance , 2007, NeuroImage.

[30]  Oliver Speck,et al.  Systematic investigation of balanced steady‐state free precession for functional MRI in the human visual cortex at 3 Tesla , 2007, Magnetic resonance in medicine.

[31]  D. Attwell,et al.  Bidirectional control of CNS capillary diameter by pericytes , 2006, Nature.

[32]  Joseph S. Gati,et al.  High field balanced-SSFP fMRI: A BOLD technique with excellent tissue sensitivity and superior large vessel suppression , 2005 .

[33]  Daniel B Ennis,et al.  3D breath‐held cardiac function with projection reconstruction in steady state free precession validated using 2D cine MRI , 2004, Journal of magnetic resonance imaging : JMRI.

[34]  Peter Boesiger,et al.  Cardiac SSFP imaging at 3 Tesla , 2004, Magnetic resonance in medicine.

[35]  Martin Oheim,et al.  Two-photon imaging of capillary blood flow in olfactory bulb glomeruli , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[36]  K. Uğurbil,et al.  Microvascular BOLD contribution at 4 and 7 T in the human brain: Gradient‐echo and spin‐echo fMRI with suppression of blood effects , 2003, Magnetic resonance in medicine.

[37]  Afonso C. Silva,et al.  Laminar specificity of functional MRI onset times during somatosensory stimulation in rat , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[38]  E Yacoub,et al.  Detection of the early decrease in fMRI signal in the motor area , 2001, Magnetic resonance in medicine.

[39]  Karl J. Friston,et al.  Nonlinear Responses in fMRI: The Balloon Model, Volterra Kernels, and Other Hemodynamics , 2000, NeuroImage.

[40]  R. Kauppinen,et al.  Venous blood effects in spin‐echo fMRI of human brain , 1999, Magnetic resonance in medicine.

[41]  E Yacoub,et al.  Detection of the early negative response in fMRI at 1.5 Tesla , 1999, Magnetic resonance in medicine.

[42]  Essa Yacoub,et al.  Further evaluation of the initial negative response in functional magnetic resonance imaging , 1999, Magnetic resonance in medicine.

[43]  Ravi S. Menon,et al.  Mental chronometry using latency-resolved functional MRI. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[44]  M. D’Esposito,et al.  The variability of human BOLD hemodynamic responses , 1998, NeuroImage.

[45]  S. Hillyard,et al.  Event-related brain potentials in the study of visual selective attention. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[46]  R. Turner,et al.  Event-Related fMRI: Characterizing Differential Responses , 1998, NeuroImage.

[47]  Karl J. Friston,et al.  Nonlinear event‐related responses in fMRI , 1998, Magnetic resonance in medicine.

[48]  R. S. Hinks,et al.  Spin‐echo and gradient‐echo epi of human brain activation using bold contrast: A comparative study at 1.5 T , 1994, NMR in biomedicine.

[49]  Karl J. Friston,et al.  Analysis of functional MRI time‐series , 1994, Human Brain Mapping.

[50]  S. Nelson,et al.  Evaluation of left ventricular volume and mass with breath-hold cine MR imaging. , 1993, Radiology.

[51]  Ravi S. Menon,et al.  Functional brain mapping by blood oxygenation level-dependent contrast magnetic resonance imaging. A comparison of signal characteristics with a biophysical model. , 1993, Biophysical journal.

[52]  R. Turner,et al.  Dynamic magnetic resonance imaging of human brain activity during primary sensory stimulation. , 1992, Proceedings of the National Academy of Sciences of the United States of America.

[53]  R. S. Hinks,et al.  Time course EPI of human brain function during task activation , 1992, Magnetic resonance in medicine.

[54]  R. Herfkens,et al.  Phase contrast cine magnetic resonance imaging. , 1991, Magnetic resonance quarterly.

[55]  W. Cleveland Robust Locally Weighted Regression and Smoothing Scatterplots , 1979 .