Wiener index of quadrangulation graphs

The Wiener index of a graph $G$, denoted $W(G)$, is the sum of the distances between all pairs of vertices in $G$. E. Czabarka, et al. conjectured that for an $n$-vertex, $n\geq 4$, simple quadrangulation graph $G$, \begin{equation*}W(G)\leq \begin{cases} \frac{1}{12}n^3+\frac{7}{6}n-2, &\text{ $n\equiv 0~(mod \ 2)$,}\\ \frac{1}{12}n^3+\frac{11}{12}n-1, &\text{ $n\equiv 1~(mod \ 2)$}. \end{cases} \end{equation*} In this paper, we confirm this conjecture.

[1]  Ján Plesník,et al.  On the sum of all distances in a graph or digraph , 1984, J. Graph Theory.

[2]  Robert A. Beezer,et al.  Using minimum degree to bound average distance , 2001, Discret. Math..

[3]  Peter Dankelmann,et al.  Wiener Index and Remoteness in Triangulations and Quadrangulations , 2019, Discret. Math. Theor. Comput. Sci..

[4]  Peter Winkler,et al.  Mean distance and minimum degree , 1997, J. Graph Theory.

[5]  Dieter Rautenbach,et al.  Wiener index versus maximum degree in trees , 2002, Discret. Appl. Math..

[6]  Frank Harary,et al.  Status and Contrastatus , 1959 .

[7]  H. Oser An Average Distance , 1975 .

[8]  Paul Wollan,et al.  Generation of simple quadrangulations of the sphere , 2005, Discret. Math..

[9]  Peter Dankelmann,et al.  Average Distance and Edge-Connectivity II , 2008, SIAM J. Discret. Math..

[10]  L. Lovász Combinatorial problems and exercises , 1979 .

[11]  H. Wiener Structural determination of paraffin boiling points. , 1947, Journal of the American Chemical Society.

[12]  Peter Dankelmann,et al.  Average distance, minimum degree, and spanning trees , 2000, J. Graph Theory.

[13]  Peter Dankelmann,et al.  Average Distance and Edge-Connectivity I , 2008, SIAM J. Discret. Math..

[14]  Ervin Györi,et al.  The maximum Wiener index of maximal planar graphs , 2019, J. Comb. Optim..

[15]  Odile Favaron,et al.  Edge-vulnerability and mean distance , 1989, Networks.