A central limit theorem for the determinant of a Wigner matrix
暂无分享,去创建一个
[1] N. R. Goodman. The Distribution of the Determinant of a Complex Wishart Distributed Matrix , 1963 .
[2] A. Prékopa. ON RANDOM DETERMINANTS I , 1967 .
[3] B. M. Brown,et al. Martingale Central Limit Theorems , 1971 .
[4] V. Alagar. The distribution of random determinants , 1978 .
[5] V. Girko. The Central Limit Theorem for Random Determinants , 1980 .
[6] G. Szegö,et al. [52–2] On Certain Hermitian Forms Associated with the Fourier Series of a Positive Function , 1982 .
[7] H. Trotter. Eigenvalue distributions of large Hermitian matrices; Wigner's semi-circle law and a theorem of Kac, Murdock, and Szegö , 1984 .
[8] Vi︠a︡cheslav Leonidovich Girko,et al. Theory of random determinants , 1990 .
[9] R. Arratia,et al. The Cycle Structure of Random Permutations , 1992 .
[10] Z. Bai,et al. Convergence rate of expected spectral distributions of large random matrices , 2008 .
[11] Z. Bai,et al. Convergence Rate of Expected Spectral Distributions of Large Random Matrices. Part I. Wigner Matrices , 1993 .
[12] E. Szemerédi,et al. On the probability that a random ±1-matrix is singular , 1995 .
[13] Madan Lal Mehta,et al. Probability density of the determinant of a random Hermitian matrix , 1998 .
[14] V. Girko. A Refinement of the Central Limit Theorem for Random Determinants , 1998 .
[15] K. Johansson. On fluctuations of eigenvalues of random Hermitian matrices , 1998 .
[16] Giovanni M.Cicuta,et al. Probability density of determinants of random matrices , 2000 .
[17] Edouard Brézin,et al. Characteristic Polynomials of Random Matrices , 2000 .
[18] N. Snaith,et al. Random Matrix Theory and ζ(1/2+it) , 2000 .
[19] Delannay,et al. Distribution of the determinant of a random real-symmetric matrix from the gaussian orthogonal ensemble , 2000, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.
[20] I. V. Krasovsky. Correlations of the characteristic polynomials in the Gaussian unitary ensemble or a singular Hankel determinant , 2004 .
[21] P. J. Forrester,et al. Applications and generalizations of Fisher–Hartwig asymptotics , 2004 .
[22] T. Garoni. On the asymptotics of some large Hankel determinants generated by Fisher–Hartwig symbols defined on the real line , 2004, math-ph/0411019.
[23] T. Tao,et al. On the singularity probability of random Bernoulli matrices , 2005, math/0501313.
[24] G. Rempała,et al. Asymptotics for products of independent sums with an application to Wishart determinants , 2005 .
[25] Kevin P. Costello,et al. Random symmetric matrices are almost surely nonsingular , 2005, math/0505156.
[26] T. Tao,et al. On random ±1 matrices: Singularity and determinant , 2006 .
[27] A. Rouault. Asymptotic behavior of random determinants in the Laguerre, Gram and Jacobi ensembles , 2006, math/0607767.
[28] H. Yau,et al. Wegner estimate and level repulsion for Wigner random matrices , 2008, 0811.2591.
[29] T. Tao,et al. Random matrices: Universality of local eigenvalue statistics , 2009, 0906.0510.
[30] Horng-Tzer Yau,et al. Local Semicircle Law and Complete Delocalization for Wigner Random Matrices , 2008, 0803.0542.
[31] J. W. Silverstein,et al. Spectral Analysis of Large Dimensional Random Matrices , 2009 .
[32] Horng-Tzer Yau,et al. Semicircle law on short scales and delocalization of eigenvectors for Wigner random matrices , 2007, 0711.1730.
[33] Jean Bourgain,et al. On the singularity probability of discrete random matrices , 2009, 0905.0461.
[34] H. Yau,et al. Bulk universality for generalized Wigner matrices , 2010, 1001.3453.
[35] R. Killip. Gaussian Fluctuations for β Ensembles , 2010 .
[36] H. Yau,et al. Rigidity of eigenvalues of generalized Wigner matrices , 2010, 1007.4652.
[37] T. Tao,et al. Random Matrices: Universality of Local Eigenvalue Statistics up to the Edge , 2009, 0908.1982.
[38] B. Schlein,et al. A Wegner estimate for Wigner matrices , 2011, 1103.1473.
[39] Terence Tao,et al. Random matrices: Universal properties of eigenvectors , 2011, 1103.2801.
[40] Jun Yin,et al. Eigenvector distribution of Wigner matrices , 2011, 1102.0057.
[41] Hoi H. Nguyen,et al. On the least singular value of random symmetric matrices , 2011, 1102.1476.
[42] R. Ulrich,et al. OBSERVING EVOLUTION IN THE SUPERGRANULAR NETWORK LENGTH SCALE DURING PERIODS OF LOW SOLAR ACTIVITY , 2011, 1102.0303.
[43] T. Tao,et al. Random covariance matrices: Universality of local statistics of eigenvalues , 2009, 0912.0966.