Nonlinear Silicon Photonics: Analytical Tools

Since the recent demonstration of chip-scale, silicon-based, photonic devices, silicon photonics provides a viable and promising platform for modern nonlinear optics. The development and improvement of such devices are helped considerably by theoretical predictions based on the solution of the underlying nonlinear propagation equations. In this paper, we review the approximate analytical tools that have been developed for analyzing active and passive silicon waveguides. These analytical tools provide the much needed physical insight that is often lost during numerical simulations. Our starting point is the coupled-amplitude equations that govern the nonlinear dynamics of two optical waves interacting inside a silicon-on-insulator waveguide. In their most general form, these equations take into account not only linear losses, dispersion, and the free-carrier and Raman effects, but also allow for the tapering of the waveguide. Employing approximations based on physical insights, we simplify the equations in a number of situations of practical interest and outline techniques that can be used to examine the influence of intricate nonlinear phenomena as light propagates through a silicon waveguide. In particular, propagation of single pulse through a waveguide of constant cross section is described with a perturbation approach. The process of Raman amplification is analyzed using both purely analytical and semianalytical methods. The former avoids the undepleted-pump approximation and provides approximate expressions that can be used to discuss intensity noise transfer from the pump to the signal in silicon Raman amplifiers. The latter utilizes a variational formalism that leads to a system of nonlinear equations that governs the evolution of signal parameters under the continuous-wave pumping. It can also be used to find an optimum tapering profile of a silicon Raman amplifier that provides the highest net gain for a given pump power.

[1]  M. Premaratne,et al.  Nonlinear Pulse Evolution in Silicon Waveguides: An Approximate Analytic Approach , 2009, Journal of Lightwave Technology.

[2]  Malin Premaratne,et al.  Maximization of net optical gain in silicon-waveguide Raman amplifiers. , 2009, Optics express.

[3]  G. Agrawal,et al.  Continuous-wave Raman amplification in silicon waveguides: beyond the undepleted pump approximation. , 2009, Optics letters.

[4]  Yurii A. Vlasov,et al.  Engineering nonlinearities in nanoscale optical systems: physics and applications in dispersion-engineered silicon nanophotonic wires , 2009 .

[5]  S. Afshar V,et al.  A full vectorial model for pulse propagation in emerging waveguides with subwavelength structures part I: Kerr nonlinearity. , 2008, Optics express.

[6]  Reza Salem,et al.  Silicon-chip-based ultrafast optical oscilloscope , 2008, Nature.

[7]  X. Sang,et al.  Influence of Pump-to-Signal RIN Transfer on Noise Figure in Silicon Raman Amplifiers , 2008, IEEE Photonics Technology Letters.

[8]  B. Jalali,et al.  Gain Enhancement in Cladding-Pumped Silicon Raman Amplifiers , 2008, IEEE Journal of Quantum Electronics.

[9]  Hon Ki Tsang,et al.  Nonlinear optical properties of silicon waveguides , 2008 .

[10]  M. Gnan,et al.  Solitons and spectral broadening in long silicon-on- insulator photonic wires. , 2008, Optics express.

[11]  Michal Lipson,et al.  Nonlinear optics in photonic nanowires. , 2008, Optics express.

[12]  Fengnian Xia,et al.  Nonlinear-optical phase modification in dispersion-engineered Si photonic wires. , 2008, Optics express.

[13]  G. Agrawal,et al.  Nonlinear optical phenomena in silicon waveguides: modeling and applications. , 2007, Optics express.

[14]  En-Kuang Tien,et al.  Influence of nonlinear loss competition on pulse compression and nonlinear optics in silicon , 2007 .

[15]  Fengnian Xia,et al.  Supercontinuum generation in silicon photonic wires , 2007, 2008 IEEE/LEOS Winter Topical Meeting Series.

[16]  N. Suzuki,et al.  FDTD Analysis of Two-Photon Absorption and Free-Carrier Absorption in Si High-Index-Contrast Waveguides , 2007, Journal of Lightwave Technology.

[17]  G. Agrawal,et al.  Impact of two-photon absorption on self-phase modulation in silicon waveguides. , 2007, Optics letters.

[18]  Robert W Boyd,et al.  Optical solitons in a silicon waveguide. , 2007, Optics express.

[19]  C Koos,et al.  Nonlinear silicon-on-insulator waveguides for all-optical signal processing. , 2007, Optics express.

[20]  O. Boyraz,et al.  Pulse Compression and Modelocking by Using TPA in Silicon Waveguides , 2007, 2007 Conference on Lasers and Electro-Optics (CLEO).

[21]  Qiang Lin,et al.  Soliton fission and supercontinuum generation in silicon waveguides. , 2007, Optics letters.

[22]  Xiaogang Chen,et al.  Cross-phase modulation-induced spectral and temporal effects on co-propagating femtosecond pulses in silicon photonic wires. , 2007, Optics express.

[23]  Y. Vlasov,et al.  Ultrafast-pulse self-phase modulation and third-order dispersion in Si photonic wire-waveguides. , 2006, Optics express.

[24]  R.M. Osgood,et al.  Third-Order Dispersion and Ultrafast-Pulse Propagation in Silicon Wire Waveguides , 2006, IEEE Photonics Technology Letters.

[25]  R. Soref,et al.  The Past, Present, and Future of Silicon Photonics , 2006, IEEE Journal of Selected Topics in Quantum Electronics.

[26]  Ernst Brinkmeyer,et al.  Cascaded silicon Raman lasers as mid-infrared sources , 2006 .

[27]  M. Först,et al.  Ultrafast Kerr-induced all-optical wavelength conversion in silicon waveguides using 1.55 mum femtosecond pulses. , 2006, Optics express.

[28]  Masahiro Tsuchiya,et al.  High speed logic gate using two-photon absorption in silicon waveguides , 2006 .

[29]  B. Jalali,et al.  Energy harvesting in silicon Raman amplifiers , 2006, 3rd IEEE International Conference on Group IV Photonics, 2006..

[30]  F. De Leonardis,et al.  Space-time modeling of Raman pulses in silicon-on-insulator optical waveguides , 2006, Journal of Lightwave Technology.

[31]  Xiaogang Chen,et al.  Self-phase-modulation in submicron silicon-on-insulator photonic wires. , 2006, Optics express.

[32]  B. Jalali,et al.  Raman-based silicon photonics , 2006, IEEE Journal of Selected Topics in Quantum Electronics.

[33]  Qiang Lin,et al.  Ultrabroadband parametric generation and wavelength conversion in silicon waveguides. , 2006, Optics express.

[34]  M. Lipson,et al.  Tailored anomalous group-velocity dispersion in silicon channel waveguides. , 2006, Optics express.

[35]  O. Hansen,et al.  Strained silicon as a new electro-optic material , 2006, Nature.

[36]  G. Agrawal,et al.  Dispersion tailoring and soliton propagation in silicon waveguides. , 2006, Optics letters.

[37]  F. Xia,et al.  Group index and group velocity dispersion in silicon-on-insulator photonic wires. , 2006, Optics express.

[38]  Ying-Hao Kuo,et al.  High efficiency wavelength conversion of 10 Gb/s data in silicon waveguides. , 2006, Optics express.

[39]  R.M. Osgood,et al.  Theory of Raman-mediated pulsed amplification in silicon-wire waveguides , 2006, IEEE Journal of Quantum Electronics.

[40]  Bahram Jalali,et al.  Silicon Raman amplifiers lasers and their applications , 2005, SPIE Optics East.

[41]  T Kawanishi,et al.  Ultrafast all-optical switching by cross-absorption modulation in silicon wire waveguides. , 2005, Optics express.

[42]  D. Moss,et al.  Investigation of self-phase modulation based optical regeneration in single mode As2Se3 chalcogenide glass fiber. , 2005, Optics express.

[43]  B. Jalali,et al.  Parametric Raman wavelength conversion in scaled silicon waveguides , 2005, Journal of Lightwave Technology.

[44]  T. Tsuchizawa,et al.  Four-wave mixing in silicon wire waveguides. , 2005, Optics express.

[45]  Y. Vlasov,et al.  C-band wavelength conversion in silicon photonic wire waveguides. , 2005, Optics express.

[46]  H. Renner,et al.  Efficiency increase of silicon-on-insulator Raman lasers by reduction of free-carrier absorption in tapered waveguides , 2005, (CLEO). Conference on Lasers and Electro-Optics, 2005..

[47]  H. Renner,et al.  Maximal gain and optimal taper design for Raman amplifiers in silicon-on-insulator waveguides , 2005 .

[48]  David J. Moss,et al.  Ultrafast all-optical modulation via two-photon absorption in silicon-on-insulator waveguides , 2005 .

[49]  Ansheng Liu,et al.  Lossless optical modulation in a silicon waveguide using stimulated Raman scattering. , 2005, Optics express.

[50]  M. Paniccia,et al.  A continuous-wave Raman silicon laser , 2005, Nature.

[51]  J. Woo,et al.  Lifetime of photogenerated carriers in silicon-on-insulator rib waveguides , 2005 .

[52]  Bahram Jalali,et al.  Demonstration of directly modulated silicon Raman laser. , 2005, Optics express.

[53]  M. Paniccia,et al.  Net continuous wave optical gain in a low loss silicon-on-insulator waveguide by stimulated Raman scattering. , 2005, Optics express.

[54]  Alexander Fang,et al.  An all-silicon Raman laser , 2005, Nature.

[55]  Hon Ki Tsang,et al.  Nonlinear absorption and Raman scattering in silicon-on-insulator optical waveguides , 2004 .

[56]  Ernst Brinkmeyer,et al.  Analysis of Raman lasing characteristics in silicon-on-insulator waveguides. , 2004, Optics express.

[57]  Bahram Jalali,et al.  Demonstration of a silicon Raman laser. , 2004, Optics express.

[58]  M. Paniccia,et al.  Net optical gain in a low loss silicon-on-insulator waveguide by stimulated Raman scattering. , 2004, Optics express.

[59]  Bahram Jalali,et al.  All optical switching and continuum generation in silicon waveguides. , 2004, Optics express.

[60]  Y. Vlasov,et al.  Raman amplification in ultrasmall silicon-on-insulator wire waveguides. , 2004, Optics express.

[61]  R. C. Williamson,et al.  Submicrosecond submilliwatt silicon-on-insulator thermooptic switch , 2004, IEEE Photonics Technology Letters.

[62]  B Jalali,et al.  Influence of nonlinear absorption on Raman amplification in Silicon waveguides. , 2004, Optics express.

[63]  O. Boyraz,et al.  Self phase modulation induced spectral broadening in silicon waveguides , 2004, Conference on Lasers and Electro-Optics, 2004. (CLEO)..

[64]  Jeff F. Young,et al.  Nonlinear transmission of 1.5 microm pulses through single-mode silicon-on-insulator waveguide structures. , 2004, Optics express.

[65]  H. Tsang,et al.  Role of free carriers from two-photon absorption in Raman amplification in silicon-on-insulator waveguides , 2004 .

[66]  A. Knights,et al.  Silicon Photonics: An Introduction , 2004 .

[67]  Jeff F. Young,et al.  Nonlinear propagation of ultrafast 1.5 μm pulses in high-index-contrast silicon-on-insulator waveguides , 2004 .

[68]  B Jalali,et al.  Phase-matching and Nonlinear Optical Processes in Silicon Waveguides. , 2004, Optics express.

[69]  B Jalali,et al.  Anti-Stokes Raman conversion in silicon waveguides. , 2003, Optics express.

[70]  B Jalali,et al.  Coupled-mode theory of the Raman effect in silicon-on-insulator waveguides. , 2003, Optics letters.

[71]  R. Claps,et al.  Observation of stimulated Raman amplification in silicon waveguides , 2003, The 16th Annual Meeting of the IEEE Lasers and Electro-Optics Society, 2003. LEOS 2003..

[72]  Mihaela Dinu,et al.  Third-order nonlinearities in silicon at telecom wavelengths , 2003 .

[73]  Bahram Jalali,et al.  Observation of Raman emission in silicon waveguides at 1.54 microm. , 2002, Optics express.

[74]  B. Jalali,et al.  Stimulated Raman scattering in silicon waveguides , 2002 .

[75]  Hon Ki Tsang,et al.  Silicon waveguide two-photon absorption detector at 1.5 μm wavelength for autocorrelation measurements , 2002 .

[76]  I. Day,et al.  Optical dispersion, two-photon absorption and self-phase modulation in silicon waveguides at 1.5 μm wavelength , 2002 .

[77]  C. Fludger,et al.  Pump to signal RIN transfer in Raman fiber amplifiers , 2001 .

[78]  Y.-H. Kao,et al.  Limitations on ultrafast optical switching in a semiconductor laser amplifier operating at transparency current , 1999 .

[79]  Benn C. Thomsen,et al.  Commercial Semiconductor Devices for Two Photon Absorption Autocorrelation of Ultrashort Light Pulses , 1998 .

[80]  Ivo Rendina,et al.  Advances in silicon-on-insulator optoelectronics , 1998 .

[81]  Allen Taflove,et al.  FDTD Maxwell's equations models for nonlinear electrodynamics and optics , 1997 .

[82]  Richard W. Ziolkowski,et al.  The incorporation of microscopic material models into the FDTD approach for ultrafast optical pulse simulations , 1997 .

[83]  A. Polyanin,et al.  Handbook of Exact Solutions for Ordinary Differential Equations , 1995 .

[84]  S. Bhadra,et al.  Raman amplification of optical pulses in silicon waveguides: effects of finite gain bandwidth, pulse width, and chirp , 2008 .

[85]  V. Passaro,et al.  Solitons in SOI Optical Waveguides , 2008 .

[86]  Bahram Jalali,et al.  Demonstration of 11dB fiber-to-fiber gain in a silicon Raman amplifier , 2004, IEICE Electron. Express.

[87]  Govind P. Agrawal,et al.  Nonlinear Fiber Optics , 1989 .

[88]  C. Fox An introduction to the calculus of variations , 1950 .