Phototransduction Biophysics

Phototransduction biophysics comprises intracellular molecular reactions and ion fluxes through ion channels on the photoreceptor membrane that converts light into an electrical signal. Phototransduction biophysics serves the purpose of counting photons and integrating these counts to an estimate – a macroscopic voltage response – of light changes from a small area of visual space. To do this task well in vastly varying light conditions, photoreceptors rely upon stochastic adaptive sampling of light information.

[1]  C. Rao,et al.  Stochastic chemical kinetics and the quasi-steady-state assumption: Application to the Gillespie algorithm , 2003 .

[2]  Stephen A. Billings,et al.  Stochastic, Adaptive Sampling of Information by Microvilli in Fly Photoreceptors , 2012, Current Biology.

[3]  J. Yellott Spectral analysis of spatial sampling by photoreceptors: Topological disorder prevents aliasing , 1982, Vision Research.

[4]  Mikko Vähäsöyrinki,et al.  Robustness of Neural Coding in Drosophila Photoreceptors in the Absence of Slow Delayed Rectifier K+ Channels , 2006, The Journal of Neuroscience.

[5]  Marten Postma,et al.  1.05 – Phototransduction in Microvillar Photoreceptors of Drosophila and Other Invertebrates , 2008 .

[6]  B W Knight,et al.  Adapting bump model for ventral photoreceptors of Limulus , 1982, The Journal of general physiology.

[7]  J. Rawlings,et al.  Approximate simulation of coupled fast and slow reactions for stochastic chemical kinetics , 2002 .

[8]  Mark A. Z. Dippé,et al.  Antialiasing through stochastic sampling , 1985, SIGGRAPH.

[9]  T. J. Wardill,et al.  Multiple Spectral Inputs Improve Motion Discrimination in the Drosophila Visual System , 2012, Science.

[10]  Marten Postma,et al.  Ca2+-Dependent Metarhodopsin Inactivation Mediated by Calmodulin and NINAC Myosin III , 2008, Neuron.

[11]  C. Luo,et al.  A dynamic model of the cardiac ventricular action potential. I. Simulations of ionic currents and concentration changes. , 1994, Circulation research.

[12]  Gordon L. Fain,et al.  Phototransduction and the Evolution of Photoreceptors , 2010, Current Biology.

[13]  H. Resat,et al.  Probability-Weighted Dynamic Monte Carlo Method for Reaction Kinetics Simulations , 2001 .

[14]  Roger C. Hardie,et al.  Light-Dependent Modulation of Shab Channels via Phosphoinositide Depletion in Drosophila Photoreceptors , 2008, Neuron.

[15]  D. Stavenga,et al.  Does Ca2+ reach millimolar concentrations after single photon absorption in Drosophila photoreceptor microvilli? , 1999, Biophysical journal.

[16]  Alain Pumir,et al.  Systems analysis of the single photon response in invertebrate photoreceptors , 2008, Proceedings of the National Academy of Sciences.

[17]  Roger C. Hardie,et al.  Light Adaptation in Drosophila Photoreceptors , 2001, The Journal of general physiology.

[18]  Roger C. Hardie,et al.  Feedback Network Controls Photoreceptor Output at the Layer of First Visual Synapses in Drosophila , 2006, The Journal of general physiology.

[19]  Gonzalo G. de Polavieja,et al.  Network Adaptation Improves Temporal Representation of Naturalistic Stimuli in Drosophila Eye: I Dynamics , 2009, PloS one.

[20]  Rama Ranganathan,et al.  Dynamic Scaffolding in a G Protein-Coupled Signaling System , 2007, Cell.

[21]  P.,et al.  Microvillar Components of Light Adaptation in Blowflies , 2003 .

[22]  Roger C. Hardie,et al.  Light Adaptation in Drosophila Photoreceptors: II. Rising Temperature Increases the Bandwidth of Reliable Signaling , 2001 .

[23]  N. Urban,et al.  Intrinsic biophysical diversity decorrelates neuronal firing while increasing information content , 2010, Nature Neuroscience.

[24]  R. Hardie,et al.  Single photon responses in Drosophila photoreceptors and their regulation by Ca2+ , 2000, The Journal of physiology.

[25]  Roger C. Hardie,et al.  Photomechanical Responses in Drosophila Photoreceptors , 2012, Science.

[26]  Mikko Juusola,et al.  Band-pass filtering by voltage-dependent membrane in an insect photoreceptor , 1993, Neuroscience Letters.

[27]  Marten Postma,et al.  Activation of TRP Channels by Protons and Phosphoinositide Depletion in Drosophila Photoreceptors , 2010, Current Biology.

[28]  Barbara Blakeslee,et al.  The intracellular pupil mechanism and photoreceptor signal: noise ratios in the fly Lucilia cuprina , 1987, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[29]  Roger C. Hardie,et al.  Novel potassium channels encoded by the Shaker locus in drosophila photoreceptors , 1991, Neuron.

[30]  F. Galton Vox Populi , 1907, Nature.

[31]  R C Hardie,et al.  Voltage-sensitive potassium channels in Drosophila photoreceptors , 1991, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[32]  Mikko Juusola,et al.  Visual Coding in Locust Photoreceptors , 2008, PloS one.

[33]  A. Kierzek,et al.  Bridging the gap between stochastic and deterministic regimes in the kinetic simulations of the biochemical reaction networks. , 2004, Biophysical journal.

[34]  K. Yau,et al.  Phototransduction Motifs and Variations , 2009, Cell.

[35]  B W Knight,et al.  Adapting-bump model for eccentric cells of Limulus , 1980, The Journal of general physiology.

[36]  C. Zuker,et al.  Calmodulin Regulation of Drosophila Light-Activated Channels and Receptor Function Mediates Termination of the Light Response In Vivo , 1997, Cell.

[37]  Oscar A. Z. Leneman,et al.  Random Sampling of Random Processes: Impulse Processes , 1966, Inf. Control..

[38]  Rob R. de Ruyter van Steveninck,et al.  The metabolic cost of neural information , 1998, Nature Neuroscience.

[39]  Yiannis N Kaznessis,et al.  An equation-free probabilistic steady-state approximation: dynamic application to the stochastic simulation of biochemical reaction networks. , 2005, The Journal of chemical physics.

[40]  Gonzalo G. de Polavieja,et al.  The Rate of Information Transfer of Naturalistic Stimulation by Graded Potentials , 2003, The Journal of general physiology.

[41]  Roger C. Hardie,et al.  Phototransduction mechanisms in Drosophila microvillar photoreceptors , 2012 .

[42]  Matti Weckström,et al.  Large Functional Variability in Cockroach Photoreceptors: Optimization to Low Light Levels , 2006, The Journal of Neuroscience.

[43]  B W Knight,et al.  Dispersion of latencies in photoreceptors of Limulus and the adapting- bump model , 1980, The Journal of general physiology.

[44]  Mikko Juusola,et al.  Compound eyes and retinal information processing in miniature dipteran species match their specific ecological demands , 2011, Proceedings of the National Academy of Sciences.

[45]  Mikko Vähäsöyrinki,et al.  The contribution of Shaker K+ channels to the information capacity of Drosophila photoreceptors , 2003, Nature.