Rational Design and Fabrication of Cu2o Film as Photoelectrode for Water Splitting

[1]  Y. Hsu,et al.  Defective Indium Tin Oxide Forms an Ohmic Back Contact to an n-Type Cu2O Photoanode to Accelerate Charge-Transfer Kinetics for Enhanced Low-Bias Photoelectrochemical Water Splitting. , 2021, ACS applied materials & interfaces.

[2]  L. Magagnin,et al.  Modification of large area Cu2O/CuO photocathode with CuS non-noble catalyst for improved photocurrent and stability , 2020, Scientific Reports.

[3]  R. P. Wijesundera,et al.  Enhanced Photoelectrochemical Water Splitting by Surface Modified Electrodeposited n‐Cu2O Thin Films , 2020, physica status solidi (a).

[4]  M. Grätzel,et al.  Cu2O photocathodes with band-tail states assisted hole transport for standalone solar water splitting , 2020, Nature Communications.

[5]  Do‐Heyoung Kim,et al.  Cu2O as an emerging photocathode for solar water splitting - A status review , 2019, International Journal of Hydrogen Energy.

[6]  J. Langley,et al.  Oxygen-deficient photostable Cu2O for enhanced visible light photocatalytic activity. , 2018, Nanoscale.

[7]  M. Guzman,et al.  Cu 2 O/TiO 2 heterostructures for CO 2 reduction through a direct Z-scheme: Protecting Cu 2 O from photocorrosion , 2017 .

[8]  D. Fichou,et al.  Cu2O Photocathode for Low Bias Photoelectrochemical Water Splitting Enabled by NiFe-Layered Double Hydroxide Co-Catalyst , 2016, Scientific Reports.

[9]  T. Miyata,et al.  Efficiency enhancement using a Zn1−xGex-O thin film as an n-type window layer in Cu2O-based heterojunction solar cells , 2016 .

[10]  T. Wong,et al.  Current Status and Future Prospects of Copper Oxide Heterojunction Solar Cells , 2016, Materials.

[11]  W. Xu,et al.  Photoelectrochemical stability improvement of cuprous oxide (Cu2O) thin films in aqueous solution , 2016 .

[12]  R. Amal,et al.  Electrodeposited Cu2O as Photoelectrodes with Controllable Conductivity Type for Solar Energy Conversion , 2015 .

[13]  Ian D. Sharp,et al.  Interfacial band-edge energetics for solar fuels production , 2015 .

[14]  Liejin Guo,et al.  Controllable morphology and conductivity of electrodeposited Cu₂O thin film: effect of surfactants. , 2014, ACS applied materials & interfaces.

[15]  Yan-Gu Lin,et al.  Polarity-dependant Performance of p-Cu2O/n-ZnO Heterojunction Solar Cells , 2014 .

[16]  N. Dasgupta,et al.  Epitaxially aligned cuprous oxide nanowires for all-oxide, single-wire solar cells. , 2014, Nano letters.

[17]  J. Barber,et al.  Engineering a Cu2O/NiO/Cu2MoS4 hybrid photocathode for H2 generation in water. , 2014, Nanoscale.

[18]  Liejin Guo,et al.  In Situ Photochemical Synthesis of Zn-Doped Cu2O Hollow Microcubes for High Efficient Photocatalytic H2 Production , 2014 .

[19]  Assaf Y Anderson,et al.  Combinatorial solar cell libraries for the investigation of different metal back contacts for TiO2-Cu2O hetero-junction solar cells. , 2014, Physical chemistry chemical physics : PCCP.

[20]  Yuki Nishi,et al.  The impact of heterojunction formation temperature on obtainable conversion efficiency in n-ZnO/p-Cu2O solar cells , 2013 .

[21]  T. Buonassisi,et al.  Low contact resistivity of metals on nitrogen-doped cuprous oxide (Cu2O) thin-films , 2012 .

[22]  P. Scardi,et al.  Nitrogen doped Cu2O: A possible material for intermediate band solar cells? , 2012 .

[23]  Kyoung-Shin Choi,et al.  Junction studies on electrochemically fabricated p-n Cu(2)O homojunction solar cells for efficiency enhancement. , 2012, Physical chemistry chemical physics : PCCP.

[24]  M. Izaki,et al.  Electrochemical Growth of (0001)-n-ZnO Film on (111)-p-Cu2O Film and the Characterization of the Heterojunction Diode , 2011 .

[25]  Vincent Laporte,et al.  Highly active oxide photocathode for photoelectrochemical water reduction. , 2011, Nature materials.

[26]  E. Wachsman,et al.  Electrical Conductivity and Thermoelectric Power of La2NiO4+δ , 2011 .

[27]  Ying Yu,et al.  p-Type and n-type Cu2O semiconductor thin films: Controllable preparation by simple solvothermal method and photoelectrochemical properties , 2011 .

[28]  Kyoung-Shin Choi,et al.  Photocurrent enhancement of n-type Cu2O electrodes achieved by controlling dendritic branching growth. , 2009, Journal of the American Chemical Society.

[29]  C. Malerba,et al.  Intrinsic defects and metastability effects in Cu2O , 2009 .

[30]  Yan Yu,et al.  Nanoporous cuprous oxide/lithia composite anode with capacity increasing characteristic and high rate capability , 2007 .

[31]  K. Rajeshwar,et al.  Electrodeposited copper oxide films: Effect of bath pH on grain orientation and orientation-dependent interfacial behavior , 2007 .

[32]  X. M. Li,et al.  Synthesis and characterization of two-layer-structured ZnO p-n homojunctions by ultrasonic spray pyrolysis , 2004 .

[33]  Y. Okamoto,et al.  Control of hole carrier density of polycrystalline Cu2O thin films by Si doping , 2002 .

[34]  B. Beverskog,et al.  Revised Pourbaix Diagrams for Copper at 25 to 300°C , 1997 .

[35]  M. Pourbaix,et al.  Presentation of an Atlas of Chemical and Electrochemical Equilibria in the Precence of a Gaseous Phase , 1997 .

[36]  T. Goldman,et al.  Electrochemical Deposition of Copper(I) Oxide Films , 1996 .

[37]  J.R.P. Jayakody,et al.  Observation of n-type photoconductivity in electrodeposited copper oxide film electrodes in a photoelectrochemical cell , 1986 .

[38]  Y. Hsu,et al.  Anisotropic Crystal Growth via Defects Cluster Boosted Solar Photoelectrochemical Water Splitting by n-Cu2O Thin Films. , 2019, ChemSusChem.

[39]  A. El-Shaer Fabrication of Homojunction Cuprous Oxide Solar Cell by Electrodeposition Method , 2015 .

[40]  M. Izaki,et al.  Light-assisted electrochemical construction of (111)Cu2O/(0001)ZnO heterojunction , 2012 .

[41]  Y. Liu,et al.  The structural and optical properties of Cu2O films electrodeposited on different substrates , 2004 .

[42]  G. Petot-ervas,et al.  Electrical conductivity at high temperature and thermodynamic study of point defects in single crystalline cuprous oxide , 1981 .