Modeling transient fluid simulations with proper orthogonal decomposition and machine learning

[1]  Cheng Huang,et al.  Learning physics-based reduced-order models for a single-injector combustion process , 2019, AIAA Journal.

[2]  Jürgen Schmidhuber,et al.  Long Short-Term Memory , 1997, Neural Computation.

[3]  YangCheng,et al.  Data-driven projection method in fluid simulation , 2016 .

[4]  Cheng Yang,et al.  Data‐driven projection method in fluid simulation , 2016, Comput. Animat. Virtual Worlds.

[5]  Chris Eliasmith,et al.  Hyperopt-Sklearn: Automatic Hyperparameter Configuration for Scikit-Learn , 2014, SciPy.

[6]  C. Pain,et al.  Model identification of reduced order fluid dynamics systems using deep learning , 2017, International Journal for Numerical Methods in Fluids.

[7]  Jan S. Hesthaven,et al.  Non-intrusive reduced order modeling of nonlinear problems using neural networks , 2018, J. Comput. Phys..

[8]  Juan Du,et al.  Non-linear model reduction for the Navier-Stokes equations using residual DEIM method , 2014, J. Comput. Phys..

[9]  L. Sirovich Turbulence and the dynamics of coherent structures. I. Coherent structures , 1987 .

[10]  Stefan Volkwein,et al.  Galerkin Proper Orthogonal Decomposition Methods for a General Equation in Fluid Dynamics , 2002, SIAM J. Numer. Anal..

[11]  Ionel M. Navon,et al.  Machine learning-based rapid response tools for regional air pollution modelling , 2019, Atmospheric Environment.

[12]  Chao Yan,et al.  Non-intrusive reduced-order modeling for fluid problems: A brief review , 2019, Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering.

[13]  Danny C. Sorensen,et al.  Nonlinear Model Reduction via Discrete Empirical Interpolation , 2010, SIAM J. Sci. Comput..

[14]  J. Hesthaven,et al.  Data-driven reduced order modeling for time-dependent problems , 2019, Computer Methods in Applied Mechanics and Engineering.

[15]  Mehdi Ghommem,et al.  pyROM: A computational framework for reduced order modeling , 2019, J. Comput. Sci..

[16]  Karen Willcox,et al.  A Survey of Projection-Based Model Reduction Methods for Parametric Dynamical Systems , 2015, SIAM Rev..

[17]  Qian Wang,et al.  Non-intrusive reduced order modeling of unsteady flows using artificial neural networks with application to a combustion problem , 2019, J. Comput. Phys..

[18]  Leo Breiman,et al.  Random Forests , 2001, Machine Learning.

[19]  My Ha Dao A Projection-Based Reduced Order Model (PBROM) for Coupled Physical-Numerical Simulations , 2018 .

[20]  Stephen P. Boyd,et al.  Sensor Selection via Convex Optimization , 2009, IEEE Transactions on Signal Processing.

[21]  Benjamin Peherstorfer,et al.  Projection-based model reduction: Formulations for physics-based machine learning , 2019, Computers & Fluids.

[22]  Vishwas Rao,et al.  Machine-Learning for Nonintrusive Model Order Reduction of the Parametric Inviscid Transonic Flow past an airfoil. , 2020 .

[23]  Geoffrey E. Hinton,et al.  Deep Learning , 2015, Nature.

[24]  Baskar Ganapathysubramanian,et al.  Deep Learning for Flow Sculpting: Insights into Efficient Learning using Scientific Simulation Data , 2017, Scientific Reports.

[25]  Bernhard Schölkopf,et al.  A tutorial on support vector regression , 2004, Stat. Comput..

[26]  Yuji Hattori,et al.  Searching for turbulence models by artificial neural network , 2016, 1607.01042.

[27]  Bernd R. Noack,et al.  The need for a pressure-term representation in empirical Galerkin models of incompressible shear flows , 2005, Journal of Fluid Mechanics.

[28]  Luning Sun,et al.  Surrogate modeling for fluid flows based on physics-constrained deep learning without simulation data , 2019, Computer Methods in Applied Mechanics and Engineering.

[29]  Wenjie Zhang,et al.  Data-driven reduced order model with temporal convolutional neural network , 2020 .

[30]  Chris Eliasmith,et al.  Hyperopt: a Python library for model selection and hyperparameter optimization , 2015 .

[31]  Omer San,et al.  An artificial neural network framework for reduced order modeling of transient flows , 2018, Commun. Nonlinear Sci. Numer. Simul..

[32]  Michele Milano,et al.  Neural network modeling for near wall turbulent flow , 2002 .

[33]  J. Nathan Kutz,et al.  Deep learning in fluid dynamics , 2017, Journal of Fluid Mechanics.

[34]  J. Templeton Evaluation of machine learning algorithms for prediction of regions of high Reynolds averaged Navier Stokes uncertainty , 2015 .