Io after Galileo

Io, the volcanically active innermost large moon of Jupiter, was a target of intense study during the recently completed NASA Galileo mission to Jupiter (1989–2003). Galileo's suite of instruments obtained unprecedented observations of Io, including high spatial resolution imaging in the visible and infrared. This paper reviews the insights gained about Io's surface, atmosphere and space environment during the Galileo mission. Io is thought to have a large Fe–FeS core, whose radius is slightly less than half the radius of Io and whose mass is 20% of the moon. The lack of an intrinsic magnetic field implies that the core is either completely solid or completely liquid. The mantle of Io appears to undergo a high degree of partial melting (20–50% molten) that produces ultramafic lavas dominated by Mg-rich orthopyroxene in an apparent 'mushy magma ocean', suggesting an undifferentiated mantle. The crust of Io is thought to be rigid, 20–30 km thick, cold away from volcanic heat sources and composed of mafic to ultramafic silicates. Tidal flexing due to Io's orbital resonance produces ~100 m tides at the surface, generating heat that powers Io's volcanism. Silicate volcanism appears to be dominant at most hot spots, although secondary sulfur volcanism may be important in some areas. The key discoveries of the Galileo era at Io were: (1) the detection of high-temperature volcanism (ultramafic, superheated mafic or 'ceramic'); (2) the detection of both S2 and SO2 gas in Ionian plumes; (3) the distinction between eruption styles, including between Pelean plumes (originating from central vents) and Promethean plumes (originating from silicate lava flow fronts); (4) the relationship between mountains and paterae, which indicates that many paterae are formed as magma preferentially ascends along tectonic faults associated with mountain building; (5) the lack of detection of an intrinsic magnetic field; (6) a new estimate of global heat flow; and (7) increased understanding of the relationship between Io, its plasma torus and Jupiter's magnetic field. There is an apparent paradox between Io's potentially ultramafic volcanism (suggestive of a primitive, undifferentiated mantle) and the widespread intensity of the volcanism on Io (which should have produced a volume of lava ~140 times the volume of Io over the last 4.5 Ga, resulting in more silicic materials). The resolution of this paradox requires either an Io that only recently (geologically) entered its tidal resonance and became volcanically active or a response of Io's lithosphere–mantle to tidal heating that has in some way prevented extreme differentiation. Understanding this problem is one of many important issues about Io that remain unresolved. We conclude this paper with a discussion of the types of future observations, from the ground and from space, that will be needed to address these issues.

[1]  K. Aksnes,et al.  Secular Acceleration of Io Derived from Mutual Satellite Events , 2001 .

[2]  D. Blaney,et al.  Stealth plumes on Io , 1995 .

[3]  Alfred S. McEwen,et al.  Orogenic tectonism on Io , 2001 .

[4]  N. Schneider,et al.  IO ON THE EVE OF THE GALILEO MISSION , 1996 .

[5]  S. Collins,et al.  Discovery of Currently Active Extraterrestrial Volcanism , 1979, Science.

[6]  R. Carlson,et al.  A tenuous carbon dioxide atmosphere on Jupiter's moon Callisto. , 1999, Science.

[7]  T V Johnson,et al.  High-temperature silicate volcanism on Jupiter's moon Io. , 1998, Science.

[8]  A. Dombard,et al.  Chaos on Io: A model for formation of mountain blocks by crustal heating, melting, and tilting , 2001 .

[9]  M. Carr,et al.  Stability of sulfur slopes on Io , 1980 .

[10]  J. Pollack,et al.  Io: An Intense Brightening Near 5 Micrometers , 1979, Science.

[11]  W. Wamsteker Narrow-band photometry of the Galilean satellites. , 1972 .

[12]  J. Drake,et al.  Electrodynamic Effects of Jupiter's Satellite Io , 1968, Nature.

[13]  A. McEwen,et al.  Revisiting the Hypothesis of a Mushy Global Magma Ocean in Io , 1999 .

[14]  P. Drossart,et al.  Proximate humid and dry regions in Jupiter's atmosphere indicate complex local meteorology , 2000, Nature.

[15]  O. Hansen Thermal radiation from the Galilean satellites measured at 10 and 20 microns , 1972 .

[16]  M. Bulmer,et al.  Origin of mountains on Io by thrust faulting and large-scale mass movements , 1998, Science.

[17]  Todd J. Jones,et al.  Active Volcanism on Io as Seen by Galileo SSI , 1998 .

[18]  Rosaly M. C. Lopes,et al.  Dynamics and Evolution of SO2 Gas Condensation Around Prometheus-like Volcanic Plumes on Io as Seen by the Near Infrared Mapping Spectrometer , 2002 .

[19]  S. Peale Origin and evolution of the natural satellites , 1999 .

[20]  W. Paterson,et al.  Passage through lo's ionospheric plasmas by the Galileo spacecraft , 2001 .

[21]  C. Phillips Voyager and Galileo SSI views of volcanic resurfacing on Io and the search for geologic activity on Europa , 2000 .

[22]  L. Keszthelyi,et al.  The summer 1997 eruption at Pillan Patera on Io: Implications for ultrabasic lava flow emplacement , 2001 .

[23]  M E Davies,et al.  Images from Galileo of the Venus Cloud Deck , 1991, Science.

[24]  A. McEwen,et al.  Magmatic Differentiation of Io , 1997 .

[25]  P. Zarka,et al.  An overview of Io flux tube footprints in Jupiter's auroral ionosphere , 2001 .

[26]  D. B. Nash,et al.  Io's surface composition based on reflectance spectra of sulfur/salt mixtures and proton-irradiation experiments , 1977 .

[27]  Rosaly M. C. Lopes,et al.  Io in the near infrared: Near‐Infrared Mapping Spectrometer (NIMS) results from the Galileo flybys in 1999 and 2000 , 2001 .

[28]  R. McNutt,et al.  Plasma Observations Near Jupiter: Initial Results from Voyager 1 , 1979, Science.

[29]  M. McElroy,et al.  The sodium and hydrogen gas clouds of Io , 1977 .

[30]  Thierry Fusco,et al.  High-Resolution Keck Adaptive Optics Imaging of Violent Volcanic Activity on Io , 2002 .

[31]  D. B. Nash,et al.  Volcanogenic Sulfur on Earth and Io: Composition and Spectroscopy , 1999 .

[32]  J. Stebbins,et al.  Further photometric measures of Jupiter's satellites and Uranus, with tests of the solar constant , 1928 .

[33]  S. Kieffer,et al.  Prometheus: Io's wandering plume. , 2000, Science.

[34]  J. Blamont,et al.  Extreme Ultraviolet Observations from Voyager 1 Encounter with Jupiter , 1979, Science.

[35]  D. B. Nash,et al.  Io: longitudinal distribution of sulfur dioxide frost. , 1980, Science.

[36]  A. J. Cohen,et al.  On the effect of X rays on the color of elemental sulfur - Implications for Jupiter's satellite Io , 1990 .

[37]  Peter Goldreich,et al.  IO, A JOVIAN UNIPOLAR INDUCTOR. , 1969 .

[38]  R. Greeley,et al.  Europa: Initial Galileo Geological Observations , 1998 .

[39]  C. Pilcher,et al.  Absorption bands in the spectrum of Io , 1978 .

[40]  G. Schaber The surface of Io: Geologic units, morphology, and tectonics , 1980 .

[41]  T V Johnson,et al.  Galileo Infrared Imaging Spectroscopy Measurements at Venus , 1991, Science.

[42]  R. H. Brown,et al.  Io: Evidence for Silicate Volcanism in 1986 , 1988, Science.

[43]  A. McEwen,et al.  New Results on Io's Color and Composition , 2000 .

[44]  C. Sobeck,et al.  Galileo Probe: In Situ Observations of Jupiter's Atmosphere , 1996, Science.

[45]  Rosaly M. C. Lopes,et al.  Evaluation of sulfur flow emplacement on Io from Galileo data and numerical modeling , 2001 .

[46]  Aharon Eviatar,et al.  Detection of ionized sulfur in the Jovian magnetosphere , 1976 .

[47]  L. Trafton Detection of a potassium cloud near Io , 1975, Nature.

[48]  K. Baines,et al.  Fresh Ammonia Ice Clouds in Jupiter: I. Spectroscopic Identification, Spatial Distribution, and Dynamical Implications , 2002 .

[49]  W. Wamsteker,et al.  On the surface composition of Io , 1974 .

[50]  J. P. Kauahikaua,et al.  Emplacement and inflation of pahoehoe sheet flows: observations and measurements of active lava flows on Kilauea volcano, Hawaii , 1994 .

[51]  T. Encrenaz,et al.  The structure, stability, and global distribution of Io's atmosphere , 1992 .

[52]  J. Veverka,et al.  Regolith variations on Io: Implications for bolometric albedos , 2000 .

[53]  G. Ballester,et al.  Discovery of gaseous S2 in Io's Pele plume. , 2000, Science.

[54]  Jani Radebaugh,et al.  A post-Galileo view of Io's interior , 2004 .

[55]  P. Cassen,et al.  Melting of Io by Tidal Dissipation , 1979, Science.

[56]  C. Sagan,et al.  Sulfur flows of Ra Patera, Io , 1984 .

[57]  A. McEwen,et al.  The final Galileo SSI observations of Io: orbits G28-I33 , 2004 .

[58]  C. T. Russell,et al.  Induced magnetic fields as evidence for subsurface oceans in Europa and Callisto , 1998, Nature.

[59]  Robert E. Johnson,et al.  A three‐dimensional azimuthally symmetric model atmosphere for Io: 2. Plasma effect on the surface , 1996 .

[60]  B. Hapke,et al.  Spectral Reflectivities of the Galilean Satellites and Titan. , 1978 .

[61]  D. Morrison,et al.  Temperatures of Titan and the Galilean satellites at 20 microns. , 1972 .

[62]  R. Greeley,et al.  A komatiite analog to potential ultramafic materials on Io , 2000 .

[63]  Richard E. Young,et al.  Space Science Reviews Volume on Galileo Mission Overview , 1992 .

[64]  D. B. Nash,et al.  VOLCANIC RESURFACING OF IO : POST-REPAIR HST IMAGING , 1997 .

[65]  A. McEwen,et al.  Imaging of volcanic activity on Jupiter's moon Io by Galileo during the Galileo Europa Mission and the Galileo Millennium Mission , 2001 .

[66]  A. McEwen,et al.  Observations and temperatures of Io's Pele Patera from Cassini and Galileo spacecraft images , 2004 .

[67]  T. Encrenaz,et al.  Temperature, Size, and Energy of the Shoemaker-Levy 9 G-Impact Fireball , 1997 .

[68]  D. B. Nash Sulfur in vacuum: sublimation effects on frozen melts, and applications to Io's surface and torus , 1987 .

[69]  B. Fegley,et al.  Oxidation State of Volcanic Gases and the Interior of Io , 1999 .

[70]  G. Davies,et al.  Magma transport of heat on Io: A mechanism allowing a thick lithosphere , 1981 .

[71]  Alfred S. McEwen,et al.  Thermal signature, eruption style, and eruption evolution at Pele and Pillan on Io , 2001 .

[72]  A. McEwen,et al.  Volcanic hot spots on Io: Correlation with low‐albedo calderas , 1985 .

[73]  Charles F. Yoder,et al.  How tidal heating in Io drives the galilean orbital resonance locks , 1979, Nature.

[74]  Dennis V. Byrnes,et al.  The Discovery and Orbit of 1993 (243)1 Dactyl , 1996 .

[75]  Jeffrey S. Kargel,et al.  Lava lakes on Io: observations of Io's volcanic activity from Galileo NIMS during the 2001 fly-bys , 2004 .

[76]  Julian C. Christou,et al.  Adaptive Optics Mapping of Io's Volcanism in the Thermal IR (3.8 μm) , 2000 .

[77]  S. Sandford,et al.  The 2.5-5.0 micron spectra of Io: Evidence for H2S and H2O frozen in SO2 , 1990 .

[78]  J. Goguen,et al.  Io's heat flow from infrared radiometry: 1983–1993 , 1994 .

[79]  E. Bigg Influence of the Satellite Io on Jupiter's Decametric Emission , 1964, Nature.

[80]  W. Macy,et al.  The Spatial Extent of Sodium Emission Around Io , 1974 .

[81]  G. Orton,et al.  Observation of Shoemaker-Levy Impacts by the Galileo Photopolarimeter Radiometer , 1995, Science.

[82]  A. McEwen,et al.  Paterae on Io: A new type of volcanic caldera? , 2001 .

[83]  A. McEwen,et al.  Galileo Encounter with 951 Gaspra: First Pictures of an Asteroid , 1992, Science.

[84]  M. Kivelson,et al.  The Permanent and Inductive Magnetic Moments of Ganymede , 2002 .

[85]  Galileo Imaging Team,et al.  Moist convection as an energy source for the large-scale motions in Jupiter's atmosphere , 2000, Nature.

[86]  A. McEwen,et al.  Io: Galileo evidence for major variations in regolith properties , 1997 .

[87]  A. McEwen,et al.  The Pele Plume (Io): Observations with the Hubble Space Telescope , 1997 .

[88]  T. Spohn,et al.  Thermal-orbital evolution of Io and Europa , 2004 .

[89]  R. Carlson,et al.  Pioneer 10 ultraviolet photometer observations at Jupiter encounter , 1974 .

[90]  S. McNamara,et al.  Background heatflow on hotspot planets: Io and Venus , 1988 .

[91]  L. Soderblom,et al.  Mapping SO2 Frost on Io by the Modeling of NIMS Hyperspectral Images , 2001 .

[92]  A. Sinclair The orbital resonance amongst the Galilean satellites of Jupiter. , 1975 .

[93]  D. B. Nash,et al.  Hydrogen Sulfide on IO: Evidence from Telescopic and Laboratory Infrared Spectra , 1989, Science.

[94]  T. Johnson,et al.  Heat flow from Io (JI) , 1981 .

[95]  M E Davies,et al.  Lunar Impact Basins and Crustal Heterogeneity: New Western Limb and Far Side Data from Galileo , 1992, Science.

[96]  J. Burns,et al.  Cassini Imaging of Jupiter's Atmosphere, Satellites, and Rings , 2003, Science.

[97]  William S. Kurth,et al.  Magnetospheric interactions with satellites , 2004 .

[98]  T. Encrenaz,et al.  Galileo Infrared Observations of the Shoemaker-Levy 9 G and R Fireballs and Splash , 1994 .

[99]  C. Russell,et al.  Galileo magnetometer measurements: a stronger case for a subsurface ocean at Europa. , 2000, Science.

[100]  B. O'leary,et al.  Io's triaxial figure , 1972 .

[101]  R. West,et al.  Direct observations of the comet Shoemaker‐Levy 9 fragment G impact by Galileo UVS , 1995 .

[102]  S. J. Peale,et al.  Orbital resonances, unusual configurations and exotic rotation states among planetary satellites , 1987 .

[103]  W. Sinton Does Io have an ammonia atmosphere , 1973 .

[104]  Rosaly M. C. Lopes,et al.  Galileo imaging of SO2 frosts on Io , 2001 .

[105]  D. Blaney,et al.  Volcanic Eruptions on Io: Heat Flow, Resurfacing, and Lava Composition , 1995 .

[106]  L. Soderblom,et al.  Erosional scarps on Io , 1979, Nature.

[107]  A. McEwen,et al.  Topographic evidence for shield volcanism on Io , 1984 .

[108]  F. Roesler,et al.  The atmospheric signature of Io's Prometheus plume and anti-jovian hemisphere: evidence for a sublimation atmosphere , 2003 .

[109]  W. Moore Tidal heating and convection in Io , 2003 .

[110]  T V Johnson,et al.  The Galilean Satellites and Jupiter: Voyager 2 Imaging Science Results , 1979, Science.

[111]  G. Consolmagno Io: Thermal models and chemical evolution , 1981 .

[112]  J. Stebbins THE LIGHT VARIATIONS OF THE SATELLITES OF JUPITER AND THEIR APPLICATION TO MEASURES OF THE SOLAR CONSTANT , 1926 .

[113]  L. Travis,et al.  Mapping of Io's thermal radiation by the Galileo photopolarimeter-radiometer (PPR) instrument , 2004 .

[114]  Robert A. Brown Optical Line Emission from IO , 1974 .

[115]  T. Fusco,et al.  A survey of Io's volcanism by adaptive optics observations in the 3.8‐μm thermal band (1996–1999) , 2001 .

[116]  W. J. Oneil,et al.  Galileo mission overview , 1983 .

[117]  Christopher T. Russell,et al.  Probabilistic models of the Jovian magnetopause and bow shock locations , 2002 .

[118]  Rosaly M. C. Lopes,et al.  Geologic Mapping of the Chaac-Camaxtli Region of Io from Galileo Imaging Data , 2002 .

[119]  A. McEwen,et al.  Large‐scale topography of Io: Implications for internal structure and heat transfer , 1988 .

[120]  Satyandra K. Gupta,et al.  Identification of gaseous SO2 and new upper limits for other gases on Io , 1979, Nature.

[121]  B. Clark,et al.  Volcanic Activity on lo at the Time of the Ulysses Encounter , 1992, Science.

[122]  Rosaly M. C. Lopes,et al.  Mapping of the Culann–Tohil region of Io from Galileo imaging data , 2004 .

[123]  B. Hapke,et al.  Spectral properties of condensed phases of disulfur monoxide, polysulfur oxide, and irradiated sulfur , 1989 .

[124]  Alfred S. McEwen,et al.  Global Color Variations on Io , 1997 .

[125]  J. Anderson,et al.  Io's gravity field and interior structure , 2001 .

[126]  A. McEwen,et al.  Mountains on Io: High‐resolution Galileo observations, initial interpretations, and formation models , 2001 .

[127]  A. McEwen,et al.  The mountains of Io: Global and geological perspectives from Voyager and Galileo , 2001 .

[128]  D. Morrison,et al.  Io: Observational constraints on internal energy and thermophysics of the surface , 1980 .

[129]  Rosaly M. C. Lopes,et al.  Geology and activity around volcanoes on Io from the analysis of NIMS spectral images , 2004 .

[130]  B. R. Tufts,et al.  Evidence for a subsurface ocean on Europa , 1998, Nature.

[131]  Bruce Macintosh,et al.  Keck AO observations of Io in and out of eclipse , 2004 .

[132]  G. Schubert,et al.  Interior composition, structure and dynamics of the Galilean satellites , 2004 .

[133]  D. B. Nash,et al.  Spectral evidence for SO2 frost or adsorbate on Io's surface , 1979, Nature.

[134]  T. Fusco,et al.  Ground‐based observations of volcanism on Io in 1999 and early 2000 , 2001 .

[135]  R. H. Brown,et al.  Significance of absorption features in Io's IR reflectance spectrum , 1979, Nature.

[136]  W. Moore Tidal heating and convection in , 2003 .

[137]  M. Hicks,et al.  A history of high‐temperature Io volcanism: February 1995 to May 1997 , 1997 .

[138]  Jeffrey Baumgardner,et al.  The extended sodium nebula of Jupiter , 1990, Nature.

[139]  Vol Xiii,et al.  Astronomical Society of the Pacific , 1937, Nature.

[140]  J. Burns,et al.  The formation of Jupiter's faint rings , 1999, Science.

[141]  R. H. Brown,et al.  Volcanic Hotspots on Io: Stability and Longitudinal Distribution , 1984, Science.

[142]  T V Johnson,et al.  Galileo Multispectral Imaging of the North Polar and Eastern Limb Regions of the Moon , 1994, Science.

[143]  T. McCord,et al.  Spectral geometric albedo of the Galilean satellites - 0.3 to 2.5 . , 1971 .

[144]  D. W. Strecker,et al.  Near-infrared spectra of the Galilean satellites - Observations and compositional implications , 1978 .

[145]  R. Greeley,et al.  The Mauna Loa sulfur flow as an analog to secondary sulfur flows (?) on Io , 1984 .

[146]  A. McEwen,et al.  Io's thermal emission from the Galileo photopolarimeter-radiometer. , 2000, Science.

[147]  Paul E. Geissler,et al.  Volcanic Activity on Io During the Galileo Era , 2003 .

[148]  A. T. Young,et al.  On the colors of Jupiter's satellite Io: Irradiation of solid sulfur at 77 K , 1986 .

[149]  B. Schmitt,et al.  Possible identification of local deposits of Cl2SO2 on Io from NIMS/Galileo spectra , 2003 .

[150]  L. Keszthelyi,et al.  Emplacement of continental flood basalt lava flows , 2013 .

[151]  M. Ross,et al.  Internal structure of Io and the global distribution of its topography , 1990 .

[152]  J. Pearl,et al.  Infrared Spectra and Structure of Solid Phases of Sulfur Trioxide: Possible Identification of Solid SO3 on Io's Surface , 1995 .

[153]  Alfred S. McEwen,et al.  The lithosphere and surface of Io , 2004 .

[154]  A. Kliore,et al.  Preliminary Results on the Atmospheres of Io and Jupiter from the Pioneer 10 S-Band Occultation Experiment , 1974, Science.

[155]  F. Fanale,et al.  Sulfur dioxide on Io: Spatial distribution and physical state , 1984 .

[156]  G. Leone,et al.  Density structure of Io and the migration of magma through its lithosphere , 2001 .

[157]  S. Peale,et al.  The tides of Io , 1981 .

[158]  T. Hill,et al.  Physics of the Jovian magnetosphere. 10. Magnetospheric models. , 1983 .

[159]  Rosaly M. C. Lopes,et al.  Extreme volcanism on Io: Latest insights at the end of Galileo era , 2003 .