Universality of delay-time averages for financial time series: analytical results, computer simulations, and analysis of historical stock-market prices

We analyze historical data of stock-market prices for multiple financial indices using the concept of delay-time averaging for the financial time series (FTS). The region of validity of our recent theoretical predictions [Cherstvy A G et al 2017 New J. Phys. 19 063045] for the standard and delayed time-averaged mean-squared ‘displacements’ (TAMSDs) of the historical FTS is extended to all lag times. As the first novel element, we perform extensive computer simulations of the stochastic differential equation describing geometric Brownian motion (GBM) which demonstrate a quantitative agreement with the analytical long-term price-evolution predictions in terms of the delayed TAMSD (for all stock-market indices in crisis-free times). Secondly, we present a robust procedure of determination of the model parameters of GBM via fitting the features of the price-evolution dynamics in the FTS for stocks and cryptocurrencies. The employed concept of single-trajectory-based time averaging can serve as a predictive tool (proxy) for a mathematically based assessment and rationalization of probabilistic trends in the evolution of stock-market prices.

[1]  A. Hawkes Hawkes jump-diffusions and finance: a brief history and review , 2020, The European Journal of Finance.

[2]  Enrico Scalas,et al.  Volatility in the Italian Stock Market: An Empirical Study , 1999 .

[3]  B. Mandelbrot New Methods in Statistical Economics , 1963, Journal of Political Economy.

[4]  Andrey G. Cherstvy,et al.  Time-averaging and emerging nonergodicity upon resetting of fractional Brownian motion and heterogeneous diffusion processes , 2021, bioRxiv.

[5]  Ralf Metzler,et al.  Generalised Geometric Brownian Motion: Theory and Applications to Option Pricing , 2020, Entropy.

[6]  A. Tversky,et al.  Prospect theory: an analysis of decision under risk — Source link , 2007 .

[7]  Hasan A. Fallahgoul,et al.  Fractional Calculus and Fractional Processes with Applications to Financial Economics: Theory and Application , 2016 .

[8]  J. Poterba,et al.  What moves stock prices? , 1988 .

[9]  Didier Sornette,et al.  Dissection of Bitcoin's Multiscale Bubble History , 2018 .

[10]  S. Heston,et al.  A Closed-Form GARCH Option Valuation Model , 2000 .

[11]  Andrey G. Cherstvy,et al.  Scaled geometric Brownian motion features sub- or superexponential ensemble-averaged, but linear time-averaged mean-squared displacements. , 2021, Physical review. E.

[12]  Andrey G. Cherstvy,et al.  Anomalous diffusion, nonergodicity, and ageing for exponentially and logarithmically time-dependent diffusivity: striking differences for massive versus massless particles , 2021, Journal of Physics D: Applied Physics.

[13]  B. Malkiel The Ef cient Market Hypothesis and Its Critics , 2003 .

[14]  E. Fama,et al.  The Adjustment of Stock Prices to New Information , 1969 .

[15]  Didier Sornette,et al.  Dissection of Bitcoin’s multiscale bubble history from January 2012 to February 2018 , 2018, Royal Society Open Science.

[16]  R. Engle Autoregressive conditional heteroscedasticity with estimates of the variance of United Kingdom inflation , 1982 .

[17]  Andrey G. Cherstvy,et al.  Time averages and their statistical variation for the Ornstein-Uhlenbeck process: Role of initial particle distributions and relaxation to stationarity. , 2018, Physical review. E.

[18]  Andrey G. Cherstvy,et al.  Quantifying the non-ergodicity of scaled Brownian motion , 2015, Journal of Physics A: Mathematical and Theoretical.

[19]  S. Kou,et al.  FIRST PASSAGE TIMES OF A JUMP DIFFUSION PROCESS , 2002 .

[20]  Mark Broadie,et al.  Connecting discrete and continuous path-dependent options , 1999, Finance Stochastics.

[21]  E. Fama,et al.  Efficient Capital Markets : II , 2007 .

[22]  S. Sundaresan Continuous-Time Methods in Finance: A Review and an Assessment , 2000 .

[23]  Didier Sornette,et al.  Critical Market Crashes , 2003, cond-mat/0301543.

[24]  M. Osborne Brownian Motion in the Stock Market , 1959 .

[25]  Andrey G. Cherstvy,et al.  Anomalous diffusion models and their properties: non-stationarity, non-ergodicity, and ageing at the centenary of single particle tracking. , 2014, Physical chemistry chemical physics : PCCP.

[26]  P. Dasgupta,et al.  Equilibrium in Competitive Insurance Markets : An Essay on the Economics of Imperfect Information , 2007 .

[27]  M. Dacorogna,et al.  Volatilities of different time resolutions — Analyzing the dynamics of market components , 1997 .

[28]  D. Sornette,et al.  Bubble Diagnosis and Prediction of the 2005-2007 and 2008-2009 Chinese Stock Market Bubbles , 2009, 0909.1007.

[29]  S. Ross,et al.  The valuation of options for alternative stochastic processes , 1976 .

[30]  O. Peters,et al.  Ergodicity breaking in geometric Brownian motion. , 2012, Physical review letters.

[31]  K. French,et al.  Stock return variances: The arrival of information and the reaction of traders , 1986 .

[32]  Robert C. Merton,et al.  Applications of Option-Pricing Theory: Twenty-Five Years Later , 1997 .

[33]  P. Carr,et al.  The Variance Gamma Process and Option Pricing , 1998 .

[34]  Andrey G. Cherstvy,et al.  Inertia triggers nonergodicity of fractional Brownian motion , 2021, bioRxiv.

[35]  L. Pedersen,et al.  Asset Pricing with Liquidity Risk , 2003 .

[36]  O. Peters The ergodicity problem in economics , 2019, Nature Physics.

[37]  S. Ross,et al.  Option pricing: A simplified approach☆ , 1979 .

[38]  Didier Sornette,et al.  The Black-Scholes option pricing problem in mathematical finance : generalization and extensions for a large class of stochastic processes , 1994 .

[39]  Paul A. Samuelson,et al.  A Complete Model of Warrant Pricing that Maximizes Utility , 1969 .

[40]  D. Sornette Physics and financial economics (1776–2014): puzzles, Ising and agent-based models , 2014, Reports on progress in physics. Physical Society.

[41]  Enrico Scalas,et al.  The application of continuous-time random walks in finance and economics , 2006 .

[42]  Hersh Shefrin,et al.  Behavioral Capital Asset Pricing Theory , 1994, Journal of Financial and Quantitative Analysis.

[43]  Vadim Linetsky,et al.  Pricing Options in Jump-Diffusion Models: An Extrapolation Approach , 2008, Oper. Res..

[44]  Andrey G. Cherstvy,et al.  Nonergodicity, fluctuations, and criticality in heterogeneous diffusion processes. , 2014, Physical review. E, Statistical, nonlinear, and soft matter physics.

[45]  A. Meucci,et al.  Pricing discretely monitored Asian options under Levy processes , 2008 .

[46]  H. Brand,et al.  Multiplicative stochastic processes in statistical physics , 1979 .

[47]  F. Black,et al.  The Valuation of Option Contracts and a Test of Market Efficiency , 1972 .

[48]  F. Black,et al.  VALUING CORPORATE SECURITIES: SOME EFFECTS OF BOND INDENTURE PROVISIONS , 1976 .

[49]  Marshall F Chalverus,et al.  The Black Swan: The Impact of the Highly Improbable , 2007 .

[50]  R. Geske THE VALUATION OF COMPOUND OPTIONS , 1979 .

[51]  R. Mantegna,et al.  Scaling behaviour in the dynamics of an economic index , 1995, Nature.

[52]  R. Huang,et al.  Following the Pied Piper: Do Individual Returns Herd around the Market? , 1995 .

[53]  Oldrich A. Vasicek An equilibrium characterization of the term structure , 1977 .

[54]  Didier Sornette,et al.  The 2006–2008 oil bubble: Evidence of speculation, and prediction , 2009 .

[55]  J. Bouchaud,et al.  Leverage effect in financial markets: the retarded volatility model. , 2001, Physical review letters.

[56]  Sanford J. Grossman On the Impossibility of Informationally Efficient Markets , 1980 .

[57]  Vassilios Babalos,et al.  Herding, Faith-Based Investments and the Global Financial Crisis: Empirical Evidence From Static and Dynamic Models , 2017 .

[58]  Calvin C. Moore,et al.  Ergodic theorem, ergodic theory, and statistical mechanics , 2015, Proceedings of the National Academy of Sciences.

[59]  B. Mandlebrot The Variation of Certain Speculative Prices , 1963 .

[60]  P. Wakker,et al.  Economists’ views on the ergodicity problem , 2020, Nature Physics.

[61]  M. Yor,et al.  Stochastic Volatility for Levy Processes , 2001 .

[62]  J. McCauley Dynamics of Markets: The New Financial Economics , 2009 .

[63]  Ralf Metzler,et al.  Single particle tracking in systems showing anomalous diffusion: the role of weak ergodicity breaking. , 2010, Physical chemistry chemical physics : PCCP.

[64]  G. Crooks,et al.  Scaling laws governing stochastic growth and division of single bacterial cells , 2014, Proceedings of the National Academy of Sciences.

[65]  E. Fama Market Efficiency, Long-Term Returns, and Behavioral Finance , 1997 .

[66]  J. Bouchaud An introduction to statistical finance , 2002 .

[67]  J. Zakoian,et al.  GARCH Models: Structure, Statistical Inference and Financial Applications , 2010 .

[68]  V. Plerou,et al.  Scaling of the distribution of fluctuations of financial market indices. , 1999, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[69]  A. Boness Elements of a Theory of Stock-Option Value , 1964, Journal of Political Economy.

[70]  L. Summers Does the Stock Market Rationally Reflect Fundamental Values , 1986 .

[71]  L. Spierdijk,et al.  Mean reversion in stock prices , 2017 .

[72]  Enrico Scalas,et al.  Coupled continuous time random walks in finance , 2006 .

[73]  E. Fama The Behavior of Stock-Market Prices , 1965 .

[74]  S. Iyer-Biswas,et al.  Phenomenology of stochastic exponential growth. , 2017, Physical review. E.

[75]  H. Zimmermann,et al.  Vinzenz Bronzin's option pricing models : exposition and appraisal , 2009 .

[76]  D. Duffie Dynamic Asset Pricing Theory , 1992 .

[77]  Ladislav Kristoufek,et al.  BitCoin meets Google Trends and Wikipedia: Quantifying the relationship between phenomena of the Internet era , 2013, Scientific Reports.

[78]  Andrey G. Cherstvy,et al.  Quantifying non-ergodic dynamics of force-free granular gases. , 2015, Physical chemistry chemical physics : PCCP.

[79]  B. Mandelbrot Forecasts of Future Prices, Unbiased Markets, and "Martingale" Models , 1966 .

[80]  J. McCauley,et al.  Intraday volatility and scaling in high frequency foreign exchange markets , 2011 .

[81]  Marcin Magdziarz,et al.  Option Pricing in Subdiffusive Bachelier Model , 2011 .

[82]  Chao-Wen Li Option pricing with generalized continuous time random walk models , 2016 .

[83]  R. Gorvett Why Stock Markets Crash: Critical Events in Complex Financial Systems , 2005 .

[84]  D. Sornette,et al.  Multifractal analysis of financial markets: a review. , 2018, Reports on progress in physics. Physical Society.

[85]  Jean-Philippe Bouchaud,et al.  Bubbles, crashes and intermittency in agent based market models , 2002 .

[86]  Elie Bouri,et al.  Herding behaviour in cryptocurrencies , 2019, Finance Research Letters.

[87]  P. Samuelson Proof that Properly Anticipated Prices Fluctuate Randomly , 2015 .

[88]  Oliver Penrose,et al.  Modern ergodic theory , 1973 .

[89]  T. Lux Herd Behaviour, Bubbles and Crashes , 1995 .

[90]  L. Bachelier,et al.  Théorie de la spéculation , 1900 .

[91]  Didier Sornette,et al.  Super-Exponential Bubbles in Lab Experiments: Evidence for Anchoring Over-Optimistic Expectations on Price , 2012, 1205.0635.

[92]  J. Campbell Asset Pricing at the Millennium , 2000, The Journal of Finance.

[93]  D. Sornette,et al.  The Nasdaq crash of April 2000: Yet another example of log-periodicity in a speculative bubble ending in a crash , 2000 .

[94]  Steven Kou,et al.  A Jump Diffusion Model for Option Pricing , 2001, Manag. Sci..

[95]  Time vs. ensemble averages for nonstationary time series , 2008, 0804.0902.

[96]  M. Magdziarz Black-Scholes Formula in Subdiffusive Regime , 2009 .

[97]  A. Lo,et al.  A Non-Random Walk Down Wall Street , 1999 .

[98]  M. Rubinstein. Implied Binomial Trees , 1994 .

[99]  Marcin Magdziarz,et al.  A computational weighted finite difference method for American and barrier options in subdiffusive Black-Scholes model , 2021, Commun. Nonlinear Sci. Numer. Simul..

[100]  CALIBRATION OF THE SUBDIFFUSIVE BLACK-SCHOLES MODEL , 2009 .

[101]  Stochastic representation and path properties of a fractional Cox–Ingersoll–Ross process , 2017, Theory of Probability and Mathematical Statistics.

[102]  J. McCauley Stochastic Calculus and Differential Equations for Physics and Finance , 2013 .

[103]  Robert F. Engle,et al.  Stock Volatility and the Crash of '87: Discussion , 1990 .

[104]  Maurice G. Kendall,et al.  The Analysis of Economic Time‐Series—Part I: Prices , 1953 .

[105]  Enrico Scalas Five Years of Continuous-time Random Walks in Econophysics , 2005 .

[106]  Andrey G. Cherstvy,et al.  Ergodicity breaking, ageing, and confinement in generalized diffusion processes with position and time dependent diffusivity , 2015, 1502.01554.

[107]  R. Thaler,et al.  Does the Stock Market Overreact , 1985 .

[108]  Alan G. White,et al.  The Pricing of Options on Assets with Stochastic Volatilities , 1987 .

[109]  The Application of Econophysics , 2012 .

[110]  Bubble Diagnosis and Prediction of the 2005-2007 and 2008-2009 Chinese Stock Market Bubbles , 2009 .

[111]  Sanford J. Grossman,et al.  Information and Competitive Price Systems , 1976 .

[112]  Variable Step Random Walks and Self-Similar Distributions , 2004, physics/0412182.

[113]  O. Peters Optimal leverage from non-ergodicity , 2009, 0902.2965.

[114]  R. C. Merton,et al.  On the Pricing of Corporate Debt: The Risk Structure of Interest Rates , 1974, World Scientific Reference on Contingent Claims Analysis in Corporate Finance.

[115]  Paul A. Samuelson,et al.  Rational Theory of Warrant Pricing , 2015 .

[116]  R. C. Merton,et al.  Theory of Rational Option Pricing , 2015, World Scientific Reference on Contingent Claims Analysis in Corporate Finance.

[117]  D. Shanno,et al.  Option Pricing when the Variance Is Changing , 1987, Journal of Financial and Quantitative Analysis.

[118]  Andrey G. Cherstvy,et al.  Wealth distribution, Pareto law, and stretched exponential decay of money: Computer simulations analysis of agent-based models , 2018, Physica A: Statistical Mechanics and its Applications.

[119]  M. Magdziarz,et al.  Anomalous dynamics of Black–Scholes model time-changed by inverse subordinators , 2012 .

[120]  S. Mittnik,et al.  The Volatility of Realized Volatility , 2005 .

[121]  M. Ausloos,et al.  Modelling and forecasting the kurtosis and returns distributions of financial markets: irrational fractional Brownian motion model approach , 2019, Annals of Operations Research.

[122]  J. Bouchaud Economics needs a scientific revolution , 2008, Nature.

[123]  S. Heston A Closed-Form Solution for Options with Stochastic Volatility with Applications to Bond and Currency Options , 1993 .

[124]  Andrey G. Cherstvy,et al.  Time averaging, ageing and delay analysis of financial time series , 2017 .

[125]  Gemunu H Gunaratne,et al.  Nonstationary increments, scaling distributions, and variable diffusion processes in financial markets , 2006, Proceedings of the National Academy of Sciences.

[126]  S. Ross Information and Volatility: The No-Arbitrage Martingale Approach to Timing and Resolution Irrelevancy , 1989 .

[127]  Vikas Jain From Efficient Markets Theory to Behavioral Finance , 2003 .

[128]  B. Øksendal,et al.  FRACTIONAL WHITE NOISE CALCULUS AND APPLICATIONS TO FINANCE , 2003 .

[130]  J. Bouchaud,et al.  Theory of Financial Risk and Derivative Pricing: From Statistical Physics to Risk Management , 2011 .

[131]  L. Breiman Optimal Gambling Systems for Favorable Games , 1962 .

[132]  C. Angstmann,et al.  Time-fractional geometric Brownian motion from continuous time random walks , 2019, Physica A: Statistical Mechanics and its Applications.

[133]  Gemunu H. Gunaratne,et al.  Ensemble vs. time averages in financial time series analysis , 2012 .

[134]  Andrey G. Cherstvy,et al.  Fractional Brownian motion with random diffusivity: emerging residual nonergodicity below the correlation time , 2020, Journal of Physics A: Mathematical and Theoretical.

[135]  R. C. Merton,et al.  Optimum Consumption and Portfolio Rules in a Continuous-Time Model* , 1975 .

[136]  Xavier Gabaix,et al.  Price fluctuations, market activity and trading volume , 2001 .

[137]  R. C. Merton,et al.  Option pricing when underlying stock returns are discontinuous , 1976 .

[138]  J. Cox The Constant Elasticity of Variance Option Pricing Model , 1996 .

[139]  F. Black,et al.  The Pricing of Options and Corporate Liabilities , 1973, Journal of Political Economy.

[140]  Sidney Redner,et al.  Random multiplicative processes: An elementary tutorial , 1990 .

[141]  N. Taleb,et al.  Option traders use (very) sophisticated heuristics, never the Black- Scholes-Merton formula 1 , 2010 .

[142]  D. Sornette,et al.  Is there a real-estate bubble in the US? , 2005, physics/0506027.

[143]  Sander M. Bohte,et al.  Pricing options and computing implied volatilities using neural networks , 2019, Risks.

[144]  J. Bouchaud,et al.  Welcome to a non-Black-Scholes world , 2001 .

[145]  Jean-Philippe Bouchaud,et al.  The subtle nature of financial random walks. , 2005, Chaos.

[146]  P. Cizeau,et al.  Statistical properties of the volatility of price fluctuations. , 1999, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[147]  Rosario N. Mantegna,et al.  Book Review: An Introduction to Econophysics, Correlations, and Complexity in Finance, N. Rosario, H. Mantegna, and H. E. Stanley, Cambridge University Press, Cambridge, 2000. , 2000 .

[148]  Yisong S. Tian,et al.  Pricing Lookback and Barrier Options under the CEV Process , 1999, Journal of Financial and Quantitative Analysis.

[149]  J. Bouchaud,et al.  How Markets Slowly Digest Changes in Supply and Demand , 2008, 0809.0822.

[150]  F. Diebold,et al.  The Distribution of Realized Exchange Rate Volatility , 2000 .

[151]  E. Fama EFFICIENT CAPITAL MARKETS: A REVIEW OF THEORY AND EMPIRICAL WORK* , 1970 .

[152]  J. Hull Options, futures, and other derivative securities , 1989 .

[153]  A. Stanislavsky Black–Scholes model under subordination , 2003, 1111.3263.

[154]  Steven Kou,et al.  Option Pricing Under a Double Exponential Jump Diffusion Model , 2001, Manag. Sci..

[155]  V. Yakovenko,et al.  Probability distribution of returns in the Heston model with stochastic volatility , 2002, cond-mat/0203046.

[156]  A. Lo,et al.  Stock Market Prices Do Not Follow Random Walks: Evidence from a Simple Specification Test , 1987 .

[157]  T. Bollerslev,et al.  Deutsche Mark–Dollar Volatility: Intraday Activity Patterns, Macroeconomic Announcements, and Longer Run Dependencies , 1998 .

[158]  J. Bouchaud,et al.  Fluctuations and Response in Financial Markets: The Subtle Nature of 'Random' Price Changes , 2003, cond-mat/0307332.

[159]  T. Bollerslev,et al.  Generalized autoregressive conditional heteroskedasticity , 1986 .

[160]  Gurdip Bakshi,et al.  Empirical Performance of Alternative Option Pricing Models , 1997 .

[161]  J. Bouchaud,et al.  Herd Behavior and Aggregate Fluctuations in Financial Markets , 1997 .

[162]  Annett Baier,et al.  Why Stock Markets Crash Critical Events In Complex Financial Systems , 2016 .

[163]  J. Stiglitz Information and the Change in the Paradigm in Economics , 2002 .

[164]  C. Granger,et al.  The Random Character of Stock Market Prices. , 1965 .

[165]  Gemunu H. Gunaratne,et al.  Variable diffusion in stock market fluctuations , 2015 .

[166]  J. McCauley,et al.  Anomalous scaling of stochastic processes and the Moses effect. , 2017, Physical review. E.

[167]  J. Bouchaud Weak ergodicity breaking and aging in disordered systems , 1992 .

[168]  R. Cont Empirical properties of asset returns: stylized facts and statistical issues , 2001 .

[169]  Fischer Black,et al.  How we came up with the option formula , 1989 .

[170]  M. Garcia-Parajo,et al.  A review of progress in single particle tracking: from methods to biophysical insights , 2015, Reports on progress in physics. Physical Society.