Structure function scaling in compressible super-Alfvénic MHD turbulence.

Supersonic turbulent flows of magnetized gas are believed to play an important role in the dynamics of star-forming clouds in galaxies. Understanding statistical properties of such flows is crucial for developing a theory of star formation. In this Letter we propose a unified approach for obtaining the velocity scaling in compressible and super-Alfvénic turbulence, valid for the arbitrary sonic Mach number, M(S). We demonstrate with numerical simulations that the scaling can be described with the She-Lévêque formalism, where only one parameter, interpreted as the Hausdorff dimension of the most intense dissipative structures, needs to be varied as a function of M(S). Our results thus provide a method for obtaining the velocity scaling in interstellar clouds once their Mach numbers have been inferred from observations.

[1]  M. Norman,et al.  Scaling Relations for Turbulence in the Multiphase Interstellar Medium , 2003, astro-ph/0310697.

[2]  S. Boldyrev,et al.  Structure Function Scaling in the Taurus and Perseus Molecular Cloud Complexes , 2002, astro-ph/0207568.

[3]  W. Langer,et al.  Structure Function Scaling of a 2MASS Extinction Map of Taurus , 2002, astro-ph/0208217.

[4]  A. Lazarian,et al.  Compressible sub-Alfvénic MHD turbulence in low-beta plasmas. , 2002, Physical review letters.

[5]  S. Boldyrev,et al.  Supersonic turbulence and structure of interstellar molecular clouds. , 2002, Physical review letters.

[6]  Stanislav Boldyrev,et al.  Scaling Relations of Supersonic Turbulence in Star-forming Molecular Clouds , 2001, astro-ph/0111345.

[7]  S. Boldyrev Kolmogorov-Burgers Model for Star-forming Turbulence , 2001, astro-ph/0108300.

[8]  P. Goldreich,et al.  Compressible Magnetohydrodynamic Turbulence in Interstellar Plasmas , 2001, astro-ph/0106425.

[9]  Scalings and structures in turbulent Couette-Taylor flow. , 2001, Physical review. E, Statistical, nonlinear, and soft matter physics.

[10]  A. Lazarian,et al.  Simulations of Magnetohydrodynamic Turbulence in a Strongly Magnetized Medium , 2001, astro-ph/0105235.

[11]  M. Juvela,et al.  The Turbulent Shock Origin of Proto-Stellar Cores , 2000, astro-ph/0011122.

[12]  James M. Stone,et al.  Density, Velocity, and Magnetic Field Structure in Turbulent Molecular Cloud Models , 2000, astro-ph/0008454.

[13]  P. Padoan,et al.  The Stellar Initial Mass Function from Turbulent Fragmentation , 2000, astro-ph/0011465.

[14]  D. Biskamp,et al.  Scaling properties of three-dimensional magnetohydrodynamic turbulence , 1999, Physical review letters.

[15]  R. Klessen,et al.  Gravitational Collapse in Turbulent Molecular Clouds. I. Gasdynamical Turbulence , 1999, astro-ph/9911068.

[16]  L. Hartmann,et al.  Turbulent Flow-driven Molecular Cloud Formation: A Solution to the Post-T Tauri Problem? , 1999, astro-ph/9907053.

[17]  M. Juvela,et al.  Supersonic Turbulence in the Perseus Molecular Cloud , 1999, astro-ph/9905383.

[18]  P. Padoan,et al.  A Super-Alfvénic Model of Dark Clouds , 1999, astro-ph/9901288.

[19]  Z. She,et al.  Cascade structures and scaling exponents in a dynamical model of turbulence: Measurements and comparison , 1997 .

[20]  Ciliberto,et al.  Hierarchy of the energy dissipation moments in fully developed turbulence. , 1995, Physical review letters.

[21]  Dubrulle,et al.  Intermittency in fully developed turbulence: Log-Poisson statistics and generalized scale covariance. , 1994, Physical review letters.

[22]  She,et al.  Universal scaling laws in fully developed turbulence. , 1994, Physical review letters.

[23]  Succi,et al.  Extended self-similarity in turbulent flows. , 1993, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[24]  Physical Review Letters 63 , 1989 .

[25]  R. Larson Turbulence and star formation in molecular clouds , 1980 .

[26]  V. Weizsäcker The Evolution of Galaxies and Stars. , 1951 .