Iterative Coding for Network Coding

We consider communication over a noisy network under randomized linear network coding. Possible error mechanisms include node- or link-failures, Byzantine behavior of nodes, or an overestimate of the network min-cut. Building on the work of Kötter and Kschischang, we introduce a systematic oblivious random channel model. Within this model, codewords contain a header (this is the systematic part). The header effectively records the coefficients of the linear encoding functions, thus simplifying the decoding task. Under this constraint, errors are modeled as random low-rank perturbations of the transmitted codeword. We compute the capacity of this channel and we define an error-correction scheme based on random sparse graphs and a low-complexity decoding algorithm. By optimizing over the code degree profile, we show that this construction achieves the channel capacity in complexity which is jointly quadratic in the number of coded information bits and sublogarithmic in the error probability.

[1]  K. Jain,et al.  Practical Network Coding , 2003 .

[2]  Frank R. Kschischang,et al.  Coding for Errors and Erasures in Random Network Coding , 2008, IEEE Trans. Inf. Theory.

[3]  I. Benjamini,et al.  Percolation Beyond $Z^d$, Many Questions And a Few Answers , 1996 .

[4]  Frank R. Kschischang,et al.  Capacity of random network coding under a probabilistic error model , 2008, 2008 24th Biennial Symposium on Communications.

[5]  Rüdiger L. Urbanke,et al.  Efficient encoding of low-density parity-check codes , 2001, IEEE Trans. Inf. Theory.

[6]  Rüdiger L. Urbanke,et al.  Modern Coding Theory , 2008 .

[7]  Philippe Delsarte,et al.  Bilinear Forms over a Finite Field, with Applications to Coding Theory , 1978, J. Comb. Theory A.

[8]  Frank R. Kschischang,et al.  Coding for Errors and Erasures in Random Network Coding , 2007, IEEE Transactions on Information Theory.

[9]  A. Dembo,et al.  Gibbs Measures and Phase Transitions on Sparse Random Graphs , 2009, 0910.5460.

[10]  Daniel A. Spielman,et al.  Practical loss-resilient codes , 1997, STOC '97.

[11]  Tracey Ho,et al.  A Random Linear Network Coding Approach to Multicast , 2006, IEEE Transactions on Information Theory.

[12]  Robert G. Gallager,et al.  Low-density parity-check codes , 1962, IRE Trans. Inf. Theory.

[13]  Rudolf Ahlswede,et al.  Network information flow , 2000, IEEE Trans. Inf. Theory.

[14]  Frank R. Kschischang,et al.  A Rank-Metric Approach to Error Control in Random Network Coding , 2007, IEEE Transactions on Information Theory.

[15]  Rüdiger L. Urbanke,et al.  Density Evolution, Thresholds and the Stability Condition for Non-binary LDPC Codes , 2005, ArXiv.

[16]  T. Ho,et al.  On Linear Network Coding , 2010 .

[17]  Baochun Li,et al.  How Practical is Network Coding? , 2006, 200614th IEEE International Workshop on Quality of Service.

[18]  Muriel Médard,et al.  An algebraic approach to network coding , 2003, TNET.

[19]  Thomas M. Cover,et al.  Elements of Information Theory , 2005 .

[20]  Svante Janson,et al.  Random graphs , 2000, Wiley-Interscience series in discrete mathematics and optimization.

[21]  S. Kak Information, physics, and computation , 1996 .