A numerical study of the long wave-short wave interaction equations
暂无分享,去创建一个
[1] V. Zakharov. Collapse of Langmuir Waves , 1972 .
[2] S. Erbay. Nonlinear interaction between long and short waves in a generalized elastic solid , 2000 .
[3] Yan‐Chow Ma. The resonant interaction among long and short waves , 1981 .
[4] Gulcin M. Muslu,et al. A split-step Fourier method for the complex modified Korteweg-de Vries equation☆ , 2003 .
[5] T. Driscoll,et al. Regular Article: A Fast Spectral Algorithm for Nonlinear Wave Equations with Linear Dispersion , 1999 .
[6] Christophe Besse,et al. Order Estimates in Time of Splitting Methods for the Nonlinear Schrödinger Equation , 2002, SIAM J. Numer. Anal..
[7] D. J. Benney. A General Theory for Interactions Between Short and Long Waves , 1977 .
[8] G. Wei,et al. Local spectral time splitting method for first- and second-order partial differential equations , 2005 .
[9] Christophe Besse,et al. A Relaxation Scheme for the Nonlinear Schrödinger Equation , 2004, SIAM J. Numer. Anal..
[10] D. Lannes,et al. A numerical study of the long-wave short-wave resonance for 3D water waves , 2001 .
[11] Gulcin M. Muslu,et al. Higher-order split-step Fourier schemes for the generalized nonlinear Schrödinger equation , 2005, Math. Comput. Simul..
[12] N. Mauser,et al. Numerical study of the Davey-Stewartson system , 2004 .