Observateurs en dimension infinie. Application à l'étude de quelques problèmes inverses

Dans un grand nombre d'applications modernes, on est amene a estimer l'etat initial (ou final) d'un systeme infini-dimensionnel (typiquement un systeme gouverne par une Equation aux Derivees Partielles (EDP) d'evolution) a partir de la connaissance partielle du systeme sur un intervalle de temps limite. Un champ d'applications dans lequel apparait frequemment ce type de probleme d'identification est celui de la medecine. Ainsi, la detection de tumeurs par tomographie thermo-acoustique peut se ramener a des problemes de reconstruction de donnees initiales. D'autres methodes necessitent l'identification d'un terme source, qui, sous certaines hypotheses, peut egalement se reecrire sous la forme d'un probleme de reconstruction de donnees initiales. On s'interesse dans cette these a la reconstruction de la donnee initiale d'un systeme d'evolution, en travaillant autant que possible sur le systeme infini-dimensionnel, a l'aide du nouvel algorithme developpe par Ramdani, Tucsnak et Weiss (Automatica 2010). Nous abordons en particulier l'analyse numerique de l'algorithme dans le cadre des equations de Schrodinger et des ondes avec observation interne. Nous etudions les espaces fonctionnels adequats pour son utilisation dans les equations de Maxwell, avec observations interne et frontiere. Enfin, nous tentons d'etendre le cadre d'application de cet algorithme lorsque le systeme initial est perturbe ou que le probleme inverse n'est plus bien pose, avec application a la tomographie thermo-acoustique.

[1]  R. E. Kalman,et al.  New Results in Linear Filtering and Prediction Theory , 1961 .

[2]  D. Luenberger Observing the State of a Linear System , 1964, IEEE Transactions on Military Electronics.

[3]  M. Slemrod The linear stabilization problem in Hilbert space , 1972 .

[4]  M. Slemrod A Note on Complete Controllability and Stabilizability for Linear Control Systems in Hilbert Space , 1974 .

[5]  R. Triggiani On the stabilizability problem in Banach space , 1975 .

[6]  G. A. Baker Error Estimates for Finite Element Methods for Second Order Hyperbolic Equations , 1976 .

[7]  David L. Russell,et al.  A General Theory of Observation and Control , 1977 .

[8]  D. Russell Controllability and Stabilizability Theory for Linear Partial Differential Equations: Recent Progress and Open Questions , 1978 .

[9]  Hajime Akashi,et al.  Observer Design for Linear Contractive Control Systems on Hilbert Spaces , 1981 .

[10]  V. Thomée,et al.  Error estimates for some mixed finite element methods for parabolic type problems , 1981 .

[11]  H. Akashi,et al.  Stabilizability and observer design of a class of infinite dimensional linear systems , 1982 .

[12]  J. M. Thomas,et al.  Introduction à l'analyse numérique des équations aux dérivées partielles , 1983 .

[13]  R. Dautray,et al.  Analyse mathématique et calcul numérique pour les sciences et les techniques , 1984 .

[14]  The convergence of Galerkin approximation schemes for second-order hyperbolic equations with dissipation , 1985 .

[15]  J. Lagnese,et al.  Exact boundary controllability of Maxwell's equations in a general region , 1989 .

[16]  Société de mathématiques appliquées et industrielles,et al.  Introduction aux problèmes d'évolution semi-linéaires , 1990 .

[17]  M. Fink,et al.  Time reversal of ultrasonic fields. I. Basic principles , 1992, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.

[18]  C. Bardos,et al.  Sharp sufficient conditions for the observation, control, and stabilization of waves from the boundary , 1992 .

[19]  R. Kress,et al.  Inverse Acoustic and Electromagnetic Scattering Theory , 1992 .

[20]  V. Komornik On the exact internal controllability of a Petrowsky system , 1992 .

[21]  Etude asymptotique du systeme de Maxwell avec la condition aux limites absorbante de Silver-Müller II , 1993 .

[22]  A. Germani,et al.  A Luenberger-like observer for nonlinear systems , 1993 .

[23]  E. Zuazua,et al.  The rate at which energy decays in a damped String , 1994 .

[24]  V. Komornik STABILISATION FRONTIERE DES EQUATIONS DE MAXWELL , 1994 .

[25]  D. Russell,et al.  A General Necessary Condition for Exact Observability , 1994 .

[26]  Kim-Dang Phung Stabilisation frontière du système de Maxwell avec la condition aux limites absorbante de Silver-Müller , 1995 .

[27]  Kim-Dang Phung Contrôlabilité exacte et stabilisation interne des équations de Maxwell , 1996 .

[28]  Alfredo Germani,et al.  A state observer for nonlinear dynamical systems , 1997 .

[29]  Kangsheng Liu Locally Distributed Control and Damping for the Conservative Systems , 1997 .

[30]  P. Drummond,et al.  Time reversed acoustics , 1997 .

[31]  Thilo Penzl,et al.  A Cyclic Low-Rank Smith Method for Large Sparse Lyapunov Equations , 1998, SIAM J. Sci. Comput..

[32]  Richard Rebarber,et al.  Optimizability and Estimatability for Infinite-Dimensional Linear Systems , 2000, SIAM J. Control. Optim..

[33]  Serge Nicaise,et al.  Exact Boundary Controllability of Maxwell's Equations in Heterogeneous Media and an Application to an Inverse Source Problem , 2000, SIAM J. Control. Optim..

[34]  Exact Internal Controllability of Maxwell's Equations , 2000 .

[35]  M. Eller,et al.  Exact Boundary Controllability of Electromagnetic Fields in a General Region , 2002 .

[36]  G. Sallet,et al.  Observers for Lipschitz non-linear systems , 2002 .

[37]  Qinghua Zhang,et al.  STATE AND PARAMETER ESTIMATION FOR NONLINEAR SYSTEMS , 2002 .

[38]  Une approche non classique d'un problème d'assimilation de données , 2002 .

[39]  Pascal Hébrard,et al.  Optimal shape and position of the actuators for the stabilization of a string , 2003, Syst. Control. Lett..

[40]  Marius Tucsnak,et al.  How to get a conservative well-posed linear system out of thin air. Part I. Well-posedness and energy balance , 2003 .

[41]  J. Couchouron,et al.  Nonlinear observers in reflexive Banach spaces , 2003 .

[42]  Marius Tucsnak,et al.  How to Get a Conservative Well-Posed Linear System Out of Thin Air. Part II. Controllability and Stability , 2003, SIAM J. Control. Optim..

[43]  J. Blum,et al.  Back and forth nudging algorithm for data assimilation problems , 2005 .

[44]  José Manuel Urquiza Rapid Exponential Feedback Stabilization with Unbounded Control Operators , 2005, SIAM J. Control. Optim..

[45]  Enrique Zuazua,et al.  Propagation, Observation, and Control of Waves Approximated by Finite Difference Methods , 2005, SIAM Rev..

[46]  M. Krstić,et al.  Backstepping observers for a class of parabolic PDEs , 2005, Syst. Control. Lett..

[47]  Pablo Pedregal,et al.  OPTIMAL DESIGN OF THE DAMPING SET FOR THE STABILIZATION OF THE WAVE EQUATION , 2006 .

[48]  F. L. Dimet,et al.  On optimal solution error in variational data assimilation: theoretical aspects , 2007 .

[49]  滕加俊,et al.  Some theoretical problems on variational data assimilation , 2007 .

[50]  E. Zuazua,et al.  On the observability of time-discrete conservative linear systems , 2008 .

[51]  J. Blum,et al.  A nudging-based data assimilation method: the Back and Forth Nudging (BFN) algorithm , 2008 .

[52]  Xu Zhang,et al.  Time Reversal Focusing of the Initial State for Kirchhoff Plate , 2008, SIAM J. Appl. Math..

[53]  E. Zuazua,et al.  Uniformly exponentially stable approximations for a class of damped systems , 2009 .

[54]  Carlos J. S. Alves,et al.  Solving Inverse Source Problems Using Observability. Applications to the Euler--Bernoulli Plate Equation , 2009, SIAM J. Control. Optim..

[55]  Fast and strongly localized observation for a perturbed plate equation , 2009 .

[56]  G. Weiss,et al.  Observation and Control for Operator Semigroups , 2009 .

[57]  Jean-Pierre Puel A Nonstandard Approach to a Data Assimilation Problem and Tychonov Regularization Revisited , 2009, SIAM J. Control. Optim..

[58]  Mazyar Mirrahimi,et al.  Observer-based Hamiltonian identification for quantum systems , 2007, Autom..

[59]  B. Jacob,et al.  Admissibility and Observability of Observation Operators for Semilinear Problems , 2009 .

[60]  Ionel M. Navon,et al.  Data Assimilation for Geophysical Fluids , 2009 .

[61]  Philippe Martin,et al.  Non-Linear Symmetry-Preserving Observers on Lie Groups , 2007, IEEE Transactions on Automatic Control.

[62]  Kirsten Morris,et al.  Approximation of low rank solutions for linear quadratic control of partial differential equations , 2010, Comput. Optim. Appl..

[63]  Marius Tucsnak,et al.  Recovering the initial state of an infinite-dimensional system using observers , 2010, Autom..

[64]  I. Yu. Gejadze,et al.  On optimal solution error covariances in variational data assimilation problems , 2010, J. Comput. Phys..

[65]  INTERNAL EXACT OBSERVABILITY OF A PERTURBED EULER-BERNOULLI EQUATION , 2010 .

[66]  Patrick Joly,et al.  Optimized higher order time discretization of second order hyperbolic problems: Construction and numerical study , 2010, J. Comput. Appl. Math..

[67]  Kazufumi Ito,et al.  A time reversal based algorithm for solving initial data inverse problems , 2010 .

[68]  Bao-Zhu Guo,et al.  On the convergence of an extended state observer for nonlinear systems with uncertainty , 2011, Syst. Control. Lett..

[69]  V. P. Shutyaev,et al.  Adjoint to the Hessian derivative and error covariances in variational data assimilation , 2011 .

[70]  Miroslav Krstic,et al.  Boundary Controllers and Observers for the Linearized Schrödinger Equation , 2011, SIAM J. Control. Optim..

[71]  J. Blum,et al.  Diffusive Back and Forth Nudging algorithm for data assimilation , 2011 .

[72]  Marius Tucsnak,et al.  An Approximation Method for Exact Controls of Vibrating Systems , 2011, SIAM J. Control. Optim..

[73]  Julia,et al.  Vector-valued Laplace Transforms and Cauchy Problems , 2011 .

[74]  K. Ramdani,et al.  Observateurs itératifs en horizon fini. Application à la reconstruction de données initiales pour des EDP d'évolution , 2011 .

[75]  Ghislain Haine,et al.  Reconstructing initial data using observers: error analysis of the semi-discrete and fully discrete approximations , 2012, Numerische Mathematik.

[76]  Olof J. Staffans,et al.  A Physically Motivated Class of Scattering Passive Linear Systems , 2012, SIAM J. Control. Optim..