Observateurs en dimension infinie. Application à l'étude de quelques problèmes inverses
暂无分享,去创建一个
[1] R. E. Kalman,et al. New Results in Linear Filtering and Prediction Theory , 1961 .
[2] D. Luenberger. Observing the State of a Linear System , 1964, IEEE Transactions on Military Electronics.
[3] M. Slemrod. The linear stabilization problem in Hilbert space , 1972 .
[4] M. Slemrod. A Note on Complete Controllability and Stabilizability for Linear Control Systems in Hilbert Space , 1974 .
[5] R. Triggiani. On the stabilizability problem in Banach space , 1975 .
[6] G. A. Baker. Error Estimates for Finite Element Methods for Second Order Hyperbolic Equations , 1976 .
[7] David L. Russell,et al. A General Theory of Observation and Control , 1977 .
[8] D. Russell. Controllability and Stabilizability Theory for Linear Partial Differential Equations: Recent Progress and Open Questions , 1978 .
[9] Hajime Akashi,et al. Observer Design for Linear Contractive Control Systems on Hilbert Spaces , 1981 .
[10] V. Thomée,et al. Error estimates for some mixed finite element methods for parabolic type problems , 1981 .
[11] H. Akashi,et al. Stabilizability and observer design of a class of infinite dimensional linear systems , 1982 .
[12] J. M. Thomas,et al. Introduction à l'analyse numérique des équations aux dérivées partielles , 1983 .
[13] R. Dautray,et al. Analyse mathématique et calcul numérique pour les sciences et les techniques , 1984 .
[14] The convergence of Galerkin approximation schemes for second-order hyperbolic equations with dissipation , 1985 .
[15] J. Lagnese,et al. Exact boundary controllability of Maxwell's equations in a general region , 1989 .
[16] Société de mathématiques appliquées et industrielles,et al. Introduction aux problèmes d'évolution semi-linéaires , 1990 .
[17] M. Fink,et al. Time reversal of ultrasonic fields. I. Basic principles , 1992, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.
[18] C. Bardos,et al. Sharp sufficient conditions for the observation, control, and stabilization of waves from the boundary , 1992 .
[19] R. Kress,et al. Inverse Acoustic and Electromagnetic Scattering Theory , 1992 .
[20] V. Komornik. On the exact internal controllability of a Petrowsky system , 1992 .
[21] Etude asymptotique du systeme de Maxwell avec la condition aux limites absorbante de Silver-Müller II , 1993 .
[22] A. Germani,et al. A Luenberger-like observer for nonlinear systems , 1993 .
[23] E. Zuazua,et al. The rate at which energy decays in a damped String , 1994 .
[24] V. Komornik. STABILISATION FRONTIERE DES EQUATIONS DE MAXWELL , 1994 .
[25] D. Russell,et al. A General Necessary Condition for Exact Observability , 1994 .
[26] Kim-Dang Phung. Stabilisation frontière du système de Maxwell avec la condition aux limites absorbante de Silver-Müller , 1995 .
[27] Kim-Dang Phung. Contrôlabilité exacte et stabilisation interne des équations de Maxwell , 1996 .
[28] Alfredo Germani,et al. A state observer for nonlinear dynamical systems , 1997 .
[29] Kangsheng Liu. Locally Distributed Control and Damping for the Conservative Systems , 1997 .
[30] P. Drummond,et al. Time reversed acoustics , 1997 .
[31] Thilo Penzl,et al. A Cyclic Low-Rank Smith Method for Large Sparse Lyapunov Equations , 1998, SIAM J. Sci. Comput..
[32] Richard Rebarber,et al. Optimizability and Estimatability for Infinite-Dimensional Linear Systems , 2000, SIAM J. Control. Optim..
[33] Serge Nicaise,et al. Exact Boundary Controllability of Maxwell's Equations in Heterogeneous Media and an Application to an Inverse Source Problem , 2000, SIAM J. Control. Optim..
[34] Exact Internal Controllability of Maxwell's Equations , 2000 .
[35] M. Eller,et al. Exact Boundary Controllability of Electromagnetic Fields in a General Region , 2002 .
[36] G. Sallet,et al. Observers for Lipschitz non-linear systems , 2002 .
[37] Qinghua Zhang,et al. STATE AND PARAMETER ESTIMATION FOR NONLINEAR SYSTEMS , 2002 .
[38] Une approche non classique d'un problème d'assimilation de données , 2002 .
[39] Pascal Hébrard,et al. Optimal shape and position of the actuators for the stabilization of a string , 2003, Syst. Control. Lett..
[40] Marius Tucsnak,et al. How to get a conservative well-posed linear system out of thin air. Part I. Well-posedness and energy balance , 2003 .
[41] J. Couchouron,et al. Nonlinear observers in reflexive Banach spaces , 2003 .
[42] Marius Tucsnak,et al. How to Get a Conservative Well-Posed Linear System Out of Thin Air. Part II. Controllability and Stability , 2003, SIAM J. Control. Optim..
[43] J. Blum,et al. Back and forth nudging algorithm for data assimilation problems , 2005 .
[44] José Manuel Urquiza. Rapid Exponential Feedback Stabilization with Unbounded Control Operators , 2005, SIAM J. Control. Optim..
[45] Enrique Zuazua,et al. Propagation, Observation, and Control of Waves Approximated by Finite Difference Methods , 2005, SIAM Rev..
[46] M. Krstić,et al. Backstepping observers for a class of parabolic PDEs , 2005, Syst. Control. Lett..
[47] Pablo Pedregal,et al. OPTIMAL DESIGN OF THE DAMPING SET FOR THE STABILIZATION OF THE WAVE EQUATION , 2006 .
[48] F. L. Dimet,et al. On optimal solution error in variational data assimilation: theoretical aspects , 2007 .
[49] 滕加俊,et al. Some theoretical problems on variational data assimilation , 2007 .
[50] E. Zuazua,et al. On the observability of time-discrete conservative linear systems , 2008 .
[51] J. Blum,et al. A nudging-based data assimilation method: the Back and Forth Nudging (BFN) algorithm , 2008 .
[52] Xu Zhang,et al. Time Reversal Focusing of the Initial State for Kirchhoff Plate , 2008, SIAM J. Appl. Math..
[53] E. Zuazua,et al. Uniformly exponentially stable approximations for a class of damped systems , 2009 .
[54] Carlos J. S. Alves,et al. Solving Inverse Source Problems Using Observability. Applications to the Euler--Bernoulli Plate Equation , 2009, SIAM J. Control. Optim..
[55] Fast and strongly localized observation for a perturbed plate equation , 2009 .
[56] G. Weiss,et al. Observation and Control for Operator Semigroups , 2009 .
[57] Jean-Pierre Puel. A Nonstandard Approach to a Data Assimilation Problem and Tychonov Regularization Revisited , 2009, SIAM J. Control. Optim..
[58] Mazyar Mirrahimi,et al. Observer-based Hamiltonian identification for quantum systems , 2007, Autom..
[59] B. Jacob,et al. Admissibility and Observability of Observation Operators for Semilinear Problems , 2009 .
[60] Ionel M. Navon,et al. Data Assimilation for Geophysical Fluids , 2009 .
[61] Philippe Martin,et al. Non-Linear Symmetry-Preserving Observers on Lie Groups , 2007, IEEE Transactions on Automatic Control.
[62] Kirsten Morris,et al. Approximation of low rank solutions for linear quadratic control of partial differential equations , 2010, Comput. Optim. Appl..
[63] Marius Tucsnak,et al. Recovering the initial state of an infinite-dimensional system using observers , 2010, Autom..
[64] I. Yu. Gejadze,et al. On optimal solution error covariances in variational data assimilation problems , 2010, J. Comput. Phys..
[65] INTERNAL EXACT OBSERVABILITY OF A PERTURBED EULER-BERNOULLI EQUATION , 2010 .
[66] Patrick Joly,et al. Optimized higher order time discretization of second order hyperbolic problems: Construction and numerical study , 2010, J. Comput. Appl. Math..
[67] Kazufumi Ito,et al. A time reversal based algorithm for solving initial data inverse problems , 2010 .
[68] Bao-Zhu Guo,et al. On the convergence of an extended state observer for nonlinear systems with uncertainty , 2011, Syst. Control. Lett..
[69] V. P. Shutyaev,et al. Adjoint to the Hessian derivative and error covariances in variational data assimilation , 2011 .
[70] Miroslav Krstic,et al. Boundary Controllers and Observers for the Linearized Schrödinger Equation , 2011, SIAM J. Control. Optim..
[71] J. Blum,et al. Diffusive Back and Forth Nudging algorithm for data assimilation , 2011 .
[72] Marius Tucsnak,et al. An Approximation Method for Exact Controls of Vibrating Systems , 2011, SIAM J. Control. Optim..
[73] Julia,et al. Vector-valued Laplace Transforms and Cauchy Problems , 2011 .
[74] K. Ramdani,et al. Observateurs itératifs en horizon fini. Application à la reconstruction de données initiales pour des EDP d'évolution , 2011 .
[75] Ghislain Haine,et al. Reconstructing initial data using observers: error analysis of the semi-discrete and fully discrete approximations , 2012, Numerische Mathematik.
[76] Olof J. Staffans,et al. A Physically Motivated Class of Scattering Passive Linear Systems , 2012, SIAM J. Control. Optim..