Automated Model Building

1. Introduction.- 2. Preliminaries.- 3. Resolution-Based Methods.- 4. Constraint-Based Methods.- 5. Model Representation and Evaluation.- 6. Finite Model Building.- 7. Conclusion.- Notation Index.- References.

[1]  Gernot Salzer,et al.  Automated Deduction in Classical and Non-Classical Logics , 2002, Lecture Notes in Computer Science.

[2]  Alberto Martelli,et al.  Unification in linear time and space: a structured presentation , 1976 .

[3]  M. Villiers Experimentation and Proof in Mathematics , 2010 .

[4]  Jean-Pierre Jouannaud,et al.  Syntacticness, Cycle-Syntacticness, and Shallow Theories , 1994, Inf. Comput..

[5]  R. Milner,et al.  The use of machines to assist in rigorous proof , 1984, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences.

[6]  Geoffrey Lloyd,et al.  Origines et développement de la science grecque : magie, raison et expérience , 1990 .

[7]  Sören Stenlund Combinators, λ-Terms and Proof Theory , 2011 .

[8]  Li Bo-chun Is Mathematics a Natural Science , 2012 .

[9]  Maria Davis,et al.  Eliminating the irrelevant from mechanical proofs , 1963 .

[10]  J. A. Robinson,et al.  A Machine-Oriented Logic Based on the Resolution Principle , 1965, JACM.

[11]  F. Dick A survey of the project Automath , 1980 .

[12]  Harald Ganzinger,et al.  Rewrite-Based Equational Theorem Proving with Selection and Simplification , 1994, J. Log. Comput..

[13]  Georg Gottlob,et al.  Working with ARMs: Complexity Results on Atomic Representations of Herbrand Models , 2001, Inf. Comput..

[14]  Richard C. T. Lee,et al.  Symbolic logic and mechanical theorem proving , 1973, Computer science classics.

[15]  Ronald Fagin,et al.  Reasoning about knowledge , 1995 .

[16]  Michael J. C. Gordon,et al.  Edinburgh LCF: A mechanised logic of computation , 1979 .

[17]  S. Chou Mechanical Geometry Theorem Proving , 1987 .

[18]  Robin Milner,et al.  Edinburgh lcf: a mechanized logic of computation , 1978 .

[19]  Ricardo Caferra,et al.  Model Building and Interactive Theory Discovery , 1995, TABLEAUX.

[20]  Alexander Leitsch,et al.  Complexity of Resolution Proofs and Function Introduction , 1992, Ann. Pure Appl. Log..

[21]  A. Wilkie THE CLASSICAL DECISION PROBLEM (Perspectives in Mathematical Logic) By Egon Börger, Erich Grädel and Yuri Gurevich: 482 pp., DM.158.–, ISBN 3 540 57073 X (Springer, 1997). , 1998 .

[22]  Paul R. Lehman A Personal Perspective , 2002 .

[23]  Christian G. Fermüller,et al.  Decision Procedures and Model Building in Equational Clause Logic , 1998, Log. J. IGPL.

[24]  Laurent Catach,et al.  TABLEAUX: A general theorem prover for modal logics , 1991, Journal of Automated Reasoning.

[25]  David W. Reed,et al.  SATCHMORE: SATCHMO with RElevancy , 1995, Journal of Automated Reasoning.

[26]  Xavier Caicedo Ferrer,et al.  A formal system for the non-theorems of the propositional calculus , 1978, Notre Dame J. Formal Log..

[27]  Fred Richman,et al.  Intuitionism As Generalization , 1990 .

[28]  W. W. Bledsoe,et al.  Non-Resolution Theorem Proving , 1977, Artif. Intell..

[29]  T. Havránek,et al.  Mechanizing Hypothesis Formation: Mathematical Foundations for a General Theory , 1978 .

[30]  Robert S. Boyer,et al.  Computational Logic , 1990, ESPRIT Basic Research Series.

[31]  Kenneth Appel,et al.  The Four-Color Problem , 1978 .

[32]  W. Hodges Elementary Predicate Logic , 1983 .

[33]  Peter J. Stuckey,et al.  Programming with Constraints: An Introduction , 1998 .

[34]  Michael Beeson Computerizing mathematics: logic and computation , 1988 .

[35]  Dag Prawitz,et al.  A Mechanical Proof Procedure and its Realization in an Electronic Computer , 1960, JACM.

[36]  Amy P. Felty,et al.  The Coq proof assistant user's guide : version 5.6 , 1990 .

[37]  Michael J. Maher,et al.  Unification Revisited , 1988, Foundations of Deductive Databases and Logic Programming..

[38]  H. Gelernter,et al.  Realization of a geometry theorem proving machine , 1995, IFIP Congress.

[39]  A. Mostowski Review: B. A. Trahtenbrot, Impossibility of an Algorithm for the Decision Problem in Finite Classes , 1950, Journal of Symbolic Logic.

[40]  Jean-Yves Girard From foundations to ludics , 2003, Bull. Symb. Log..

[41]  Hubert Comon-Lundh,et al.  Unification et disunification : théorie et applications , 1988 .

[42]  C. W. H. Lam Opinion: How Reliable Is a Computer-Based Proof? , 1990 .

[43]  W. W. Bledsoe,et al.  Some Thoughts on Proof Discovery , 1986, SLP.

[44]  John Etchemendy,et al.  Tarski on truth and logical consequence , 1988, Journal of Symbolic Logic.

[45]  David A. Plaisted,et al.  Problem Solving by Searching for Models with a Theorem Prover , 1994, Artif. Intell..

[46]  Graham Wrightson,et al.  Automation of Reasoning , 1983 .

[47]  Michaël Rusinowitch,et al.  Proving refutational completeness of theorem-proving strategies: the transfinite semantic tree method , 1991, JACM.

[48]  Stig Kanger,et al.  Logical Theory and Semantic Analysis: Essays Dedicated to Stig Kanger on His Fiftieth Birthday , 1975 .

[49]  P. Campbell How to Solve It: A New Aspect of Mathematical Method , 2005 .

[50]  Eliezer L. Lozinskii,et al.  The Good Old Davis-Putnam Procedure Helps Counting Models , 2011, J. Artif. Intell. Res..

[51]  Christian G. Fermüller,et al.  Hyperresolution and Automated Model Building , 1996, J. Log. Comput..

[52]  Thierry Coquand,et al.  The Calculus of Constructions , 1988, Inf. Comput..

[53]  C. Smorynski Logical Number Theory I , 1991 .

[54]  John Alan Robinson Proof = Guarantee + Explanation , 2000, Intellectics and Computational Logic.

[55]  François Bry,et al.  Minimal Model Generation with Positive Unit Hyper-Resolution Tableaux , 1996, TABLEAUX.

[56]  C. Lam The Search for a Finite Projective Plane of Order 10 , 2005 .

[57]  Richard Kaye,et al.  Review of Craig Smoryński, Logical Number Theory I, an Introduction , 2000 .

[58]  Miki Hermann,et al.  On the Relation Between Primitive Recursion, Schematization and Divergence , 1992, ALP.

[59]  M. Davis A Computer Program for Presburger’s Algorithm , 1983 .

[60]  Nicolas Peltier System Description: An Equational Constraints Solver , 1998, CADE.

[61]  Christian G. Fermüller,et al.  Model Building by Resolution , 1992, CSL.

[62]  Peter Baumgartner,et al.  Hyper Tableaux , 1996, JELIA.

[63]  Nicolas Peltier,et al.  Pruning the Search Space and Extracting More Models in Tableaux , 1999, Log. J. IGPL.

[64]  Robert Matzinger Computational Representations of Herbrand Models Using Grammars , 1996, CSL.

[65]  P. Kidwell,et al.  The universal turing machine: a half-century survey , 1996, IEEE Annals of the History of Computing.

[66]  Graham Wrightson,et al.  An overview of automated reasoning and related fields , 2004, Journal of Automated Reasoning.

[67]  Robert L. Constable,et al.  Formal Theories and Software Systems: Fundamental Connections between Computer Science and Logic , 1992, 25th Anniversary of INRIA.

[68]  Joë Metzger,et al.  Pour la science , 1974 .

[69]  Christian G. Fermüller,et al.  Resolution Decision Procedures , 2001, Handbook of Automated Reasoning.

[70]  Henk Barendregt,et al.  The Lambda Calculus: Its Syntax and Semantics , 1985 .

[71]  Christian G. Fermüller,et al.  Resolution Methods for the Decision Problem , 1993, Lecture Notes in Computer Science.

[72]  Nicolas PeltierLaboratory LEIBNIZ-IMAG Combining Inference and Disinference Rules with Enumeration for Model Building (extended Abstract) , 1997 .

[73]  Larry Wos,et al.  Automated reasoning - 33 basic research problems , 1988 .

[74]  Petr Hájek,et al.  Mechanizing Hypothesis Formation , 1978 .

[75]  Nicolas Peltier,et al.  Tree Automata and Automated Model Building , 1997, Fundam. Informaticae.

[76]  Donald W. Loveland,et al.  Automated theorem proving: a quarter-century review , 1984 .

[77]  R. Lathe Phd by thesis , 1988, Nature.

[78]  Hiroshi Fujita,et al.  A Model Generation Theorem Prover in KL1 Using a Ramified -Stack Algorithm , 1991, International Conference on Logic Programming.

[79]  Danny De Schreye,et al.  On the Duality of Abduction and Model Generation in a Framework for Model Generation with Equality , 1994, Theor. Comput. Sci..

[80]  John N. Hooker,et al.  New methods for computing inferences in first order logic , 1993, Ann. Oper. Res..

[81]  Nicolas Peltier,et al.  On the decidability of the PVD class with equality , 2001, Log. J. IGPL.

[82]  Jean-Marie Jacquet,et al.  Introduction to Logic Programming , 1993, ICLP Workshop on Construction of Logic Programs.

[83]  Lawrence C. Paulson,et al.  The foundation of a generic theorem prover , 1989, Journal of Automated Reasoning.

[84]  David A. Plaisted,et al.  Ordered Semantic Hyper-Linking , 1997, Journal of Automated Reasoning.

[85]  H. Rasiowa,et al.  Logic at work : essays dedicated to the memory of Helena Rasiowa , 1999 .

[86]  John N. Hooker,et al.  Solving the incremental satisfiability problem , 1993, J. Log. Program..

[87]  Harold T. Hodes,et al.  The | lambda-Calculus. , 1988 .

[88]  Hubert Comon-Lundh,et al.  Equational Problems and Disunification , 1989, J. Symb. Comput..

[89]  Tanel Tammet Using Resolution for Deciding Solvable Classes and Building Finite Models , 1991, Baltic Computer Science.

[90]  Ricardo Caferra,et al.  Combining Enumeration and Deductive Techniques in order to Increase the Class of Constructible Infinite Models , 2000, J. Symb. Comput..

[91]  David A. Plaisted,et al.  Eliminating duplication with the hyper-linking strategy , 1992, Journal of Automated Reasoning.

[92]  Ronald Fagin,et al.  Probabilities on finite models , 1976, Journal of Symbolic Logic.

[93]  S. C. Kleene,et al.  Introduction to Metamathematics , 1952 .

[94]  Sophie Tison,et al.  Equality and Disequality Constraints on Direct Subterms in Tree Automata , 1992, STACS.

[95]  Christoph Weidenbach,et al.  Combining Superposition, Sorts and Splitting , 2001, Handbook of Automated Reasoning.

[96]  Reinhard Pichler Solving Equational Problems Efficiently , 1999, CADE.

[97]  B. Dreben,et al.  The decision problem: Solvable classes of quantificational formulas , 1979 .

[98]  Grigore Rosu,et al.  An Overview of the Tatami Project , 2000 .

[99]  J. Rosen Symmetry in Science , 1995 .

[100]  D. Epstein,et al.  Experimentation and proof in mathematics , 1995 .

[101]  Robert G. Jeroslow,et al.  Computation-oriented reductions of predicate to propositional logic , 1988, Decis. Support Syst..

[102]  Jian Zhang Problems on the Generation of Finite Models , 1994, CADE.

[103]  Hubert Comon-Lundh On unification of terms with integer exponents , 2005, Mathematical systems theory.

[104]  Sergei G. Vorobyov An Improved Lower Bound for the Elementary Theories of Trees , 1996, CADE.

[105]  Ronald Fagin,et al.  Monadic generalized spectra , 1975, Math. Log. Q..

[106]  George Boolos,et al.  Computability and logic , 1974 .

[107]  Hubert Comon,et al.  Disunification: A Survey. , 1991 .

[108]  B. Buchberger,et al.  Grobner Bases : An Algorithmic Method in Polynomial Ideal Theory , 1985 .

[109]  Dag Prawitz,et al.  An improved proof procedure1 , 2008 .

[110]  Thierry Boy de la Tour On the Complexity of Finite Sorted Algebras , 1998, FTP.

[111]  Alexander Leitsch Deciding Clause Classes by Semantic Clash Resolution , 1993, Fundam. Informaticae.

[112]  Nicolas Peltier,et al.  Two Problems in Geometry Solved by Using Automated ModelBuildersSt , .

[113]  Rolf Herken,et al.  The Universal Turing Machine: A Half-Century Survey , 1992 .

[114]  Per Martin-Löf,et al.  Truth of a proposition, evidence of a judgement, validity of a proof , 1987, Synthese.

[115]  Roberto J. Bayardo,et al.  Counting Models Using Connected Components , 2000, AAAI/IAAI.

[116]  Hubert Comon-Lundh,et al.  Equational Formulae with Membership Constraints , 1994, Inf. Comput..

[117]  Chin-Liang Chang Theorem proving with variable-constrained resolution , 1972, Inf. Sci..

[118]  H. Gelernter,et al.  A Note on Syntactic Symmetry and the Manipulation of Formal Systems by Machine , 1959, Inf. Control..

[119]  Edmond Bauer,et al.  La science moderne (de 1450 a 1800) , 1995 .

[120]  Steven K. Winker Generation and Verification of Finite Models and Counterexamples Using an Automated Theorem Prover Answering Two Open Questions , 1982, JACM.

[121]  M. de Rijke,et al.  Encoding Two-Valued Nonclassical Logics in Classical Logic , 2001, Handbook of Automated Reasoning.

[122]  Arthur M. Bullock,et al.  On generating the finitely satisfiable formulas , 1973, Notre Dame J. Formal Log..

[123]  Shu-Kun Lin Symmetry in Science: An Introduction to the General Theory , 1999, Entropy.

[124]  Thomas Tymoczko The Four-color Problem and Its Philosophical Significance , 1979 .

[125]  Herbert B. Enderton,et al.  A mathematical introduction to logic , 1972 .

[126]  Donald W. Loveland,et al.  Automated theorem proving: a logical basis , 1978, Fundamental studies in computer science.

[127]  Reinhard Pichler Algorithms on Atomic Representations of Herbrand Models , 1998, JELIA.

[128]  Hong Chen,et al.  On Finite Representations of Infinite Sequences of Terms , 1990, CTRS.

[129]  M. Rose,et al.  Application of model search to lattice theory. , 2001 .

[130]  Jörg Flum,et al.  Finite model theory , 1995, Perspectives in Mathematical Logic.

[131]  James R. Slagle,et al.  Automatic Theorem Proving With Renamable and Semantic Resolution , 1967, JACM.

[132]  N. G. de Bruijn,et al.  A plea for weaker frameworks , 1991 .

[133]  Ricardo Caferra,et al.  A Method for Simultanous Search for Refutations and Models by Equational Constraint Solving , 1992, J. Symb. Comput..

[134]  Lawrence J. Henschen,et al.  Unit Refutations and Horn Sets , 1974, JACM.

[135]  Theodore Hailperin,et al.  A Complete Set of Axioms for Logical Formulas Invalid in Some Finite Domain , 1961 .

[136]  Hubert Comon-Lundh Complete Axiomatizations of Some Quotient Term Algebras , 1991, ICALP.

[137]  Lifeng He,et al.  I-SATCHMO: An Improvement of SATCHMO , 2001, Journal of Automated Reasoning.

[138]  Allen Newell,et al.  Empirical explorations with the logic theory machine: a case study in heuristics , 1995 .

[139]  Hong Chen,et al.  Logic Programming with Recurrence Domains , 1991, ICALP.

[140]  Donald E. Knuth,et al.  Simple Word Problems in Universal Algebras††The work reported in this paper was supported in part by the U.S. Office of Naval Research. , 1970 .

[141]  L. Wos,et al.  Paramodulation and Theorem-Proving in First-Order Theories with Equality , 1983 .

[142]  Pietro Torasso,et al.  On the Relationship between Abduction and Deduction , 1991, J. Log. Comput..

[143]  Ralph McKenzie On Spectra, and the Negative Solution of the Decision Problem for Identities having a Finite Nontrivial Model , 1975, J. Symb. Log..

[144]  Desmond Fearnley-Sander,et al.  Universal Algebra , 1982 .

[145]  P. Suppes A comparison of the meaning and uses of models in mathematics and the empirical sciences , 1960, Synthese.

[146]  Hantao Zhang,et al.  SEM: a System for Enumerating Models , 1995, IJCAI.

[147]  S. Yau Mathematics and its applications , 2002 .

[148]  Dan Roth,et al.  On the Hardness of Approximate Reasoning , 1993, IJCAI.

[149]  Wenhui Zhang,et al.  Number of Models and Satisfiability of Sets of Clauses , 1996, Theor. Comput. Sci..

[150]  Ronald Fagin,et al.  Finite-Model Theory - A Personal Perspective , 1990, Theor. Comput. Sci..

[151]  Yuri Gurevich,et al.  The Classical Decision Problem , 1997, Perspectives in Mathematical Logic.

[152]  Ronald Fagin,et al.  A spectrum hierarchy , 1975, Math. Log. Q..

[153]  Gernot Salzer,et al.  The Unification of Infinite Sets of Terms and Its Applications , 1992, LPAR.

[154]  William H. Joyner Resolution Strategies as Decision Procedures , 1976, JACM.

[155]  Yuri Gurevich,et al.  Toward logic tailored for computational complexity , 1984 .

[156]  W. Bledsoe,et al.  Automated Theorem Proving: After 25 Years , 1984 .

[157]  Gernot Salzer,et al.  Primal Grammars and Unification Modulo a Binary Clause , 1994, CADE.

[158]  Frieder Stolzenburg,et al.  Loop-Detection in Hyper-Tableaux by Powerful Model Generation , 1999, J. Univers. Comput. Sci..

[159]  Jan Łukasiewicz,et al.  La syllogistique d'Aristote, « Philosophies pour l''ge de la science » , 1974 .

[160]  Ricardo Caferra,et al.  The Connection Method, Constraints and Model Building , 2000, Intellectics and Computational Logic.

[161]  Graham Wrightson,et al.  Automation of reasoning--classical papers on computational logic , 2012 .

[162]  A. Dawar FINITE MODEL THEORY (Perspectives in Mathematical Logic) , 1997 .

[163]  Nicolas Peltier,et al.  Nouvelles techniques pour la construction de modèles finis et infinis en déduction automatique , 1997 .

[164]  Franz Baader,et al.  Unification theory , 1986, Decis. Support Syst..

[165]  George Boolos,et al.  Trees and finite satisfiability: proof of a conjecture of Burgess , 1984, Notre Dame J. Formal Log..

[166]  Ricardo Caferra,et al.  Building Models by Using Tableaux Extended by Equational Problems , 1993 .

[167]  Thierry Boy de la Tour Some Techniques of Isomorph-Free Search , 2000, AISC.

[168]  Chen C. Chang,et al.  Model Theory: Third Edition (Dover Books On Mathematics) By C.C. Chang;H. Jerome Keisler;Mathematics , 1966 .

[169]  Claude Kirchner,et al.  Solving Equations in Abstract Algebras: A Rule-Based Survey of Unification , 1991, Computational Logic - Essays in Honor of Alan Robinson.

[170]  François Bry,et al.  SATCHMO: A Theorem Prover Implemented in Prolog , 1988, CADE.

[171]  Melvin Fitting,et al.  First-Order Logic and Automated Theorem Proving , 1990, Graduate Texts in Computer Science.

[172]  E. L. Lusk,et al.  Semigroups, antiautomorphisms, and involutions: a computer solution to an open problem. I , 1981 .

[173]  Thierry Boy Some Techniques of Isomorph-Free Search , 2000 .

[174]  de Ng Dick Bruijn,et al.  A survey of the project Automath , 1980 .

[175]  Matthias Jarke,et al.  Logic Programming and Databases , 1984, Expert Database Workshop.

[176]  Rance Cleaveland,et al.  Implementing mathematics with the Nuprl proof development system , 1986 .

[177]  Paul C. Gilmore,et al.  A Proof Method for Quantification Theory: Its Justification and Realization , 1960, IBM J. Res. Dev..

[178]  William McCune,et al.  Automated Deduction in Equational Logic and Cubic Curves , 1996, Lecture Notes in Computer Science.

[179]  Ronald Fagin,et al.  What is an Inference Rule , 1992 .

[180]  Martin D. Davis,et al.  The Early History of Automated Deduction , 2001, Handbook of Automated Reasoning.

[181]  Ricardo Caferra,et al.  A Generic Graphic Framework for Combining Inference Tools and Editing Proofs and Formulae , 1994, J. Symb. Comput..

[182]  Alexander Leitsch,et al.  The Resolution Calculus , 1997, Texts in Theoretical Computer Science An EATCS Series.

[183]  E. T. Bell,et al.  Men of Mathematics , 1937, Nature.

[184]  Balakrishnan Krishnamurthy Short proofs for tricky formulas , 2004, Acta Informatica.

[185]  Arnon Avron,et al.  Simple Consequence Relations , 1988, Inf. Comput..

[186]  Elmar Eder,et al.  Relative complexities of first order calculi , 1992, Artificial intelligence = Künstliche Intelligenz.

[187]  David A. Plaisted,et al.  Model Finding in Semantically Guided Instance-Based Theorem Proving , 1994, Fundam. Informaticae.

[188]  Gordon Plotkin,et al.  A Further Note on Inductive Generalization , 2008 .

[189]  Dan Roth,et al.  Reasoning with Models , 1994, Artif. Intell..

[190]  Nicolas Peltier,et al.  Simplifying and Generalizing Formulae in Tableaux. Pruning the Search Space and Building Models , 1997, TABLEAUX.

[191]  Hubert Comon Equational Formulas in Order-Sorted Algebras , 1990 .

[192]  Jean Goubault-Larrecq,et al.  Normal Form Transformations , 2001, Handbook of Automated Reasoning.

[193]  Ricardo Caferra,et al.  A New Technique for Verifying and Correcting Logic Programs , 1997, Journal of Automated Reasoning.

[194]  M. Beeson Foundations of Constructive Mathematics , 1985 .

[195]  José Meseguer,et al.  General Logics , 2006 .

[196]  John K. Slaney SCOTT: A Model-Guided Theorem Prover , 1993, IJCAI.

[197]  Miki Hermann,et al.  Unification of Infinite Sets of Terms Schematized by Primal Grammars , 1997, Theor. Comput. Sci..

[198]  Thomas M. Rudlof SHR Tableaux - A Framework for Automated Model Generation , 2001, J. Log. Comput..

[199]  Nicolas Peltier Increasing Model Building Capabilities by Constraint Solving on Terms with Integer Exponents , 1997, J. Symb. Comput..

[200]  Steve Reeves,et al.  Semantic tableaux as a framework for automated theorem-proving , 1987 .

[201]  David A. Plaisted,et al.  Semantically Guided First-Order Theorem Proving using Hyper-Linking , 1994, CADE.

[202]  Alan Robinson,et al.  Computational Logic - Essays in Honor of Alan Robinson , 1991, Computational Logic - Essays in Honor of Alan Robinson.

[203]  Nicolas D. Goodman,et al.  The knowing mathematician , 1984, Synthese.