Pervaporation of binary water-alcohol and methanol-alcohol mixtures through microporous methylated silica membranes: Maxwell-Stefan modeling

Abstract The transport of pure water and methanol and the selective pervaporation of binary mixtures of water or methanol in alcohols (ethanol, isopropanol, butanol) are studied for two methylated microporous silica membranes as a function of feed composition (0–15 vol% water or methanol) at 60 °C. Flux data show interaction effects between the polar components in the feed. Alcohol molecules block water and methanol transport, whereas water and methanol block or enhance the alcohol transport. A simplified Maxwell–Stefan model is set up to predict fluxes from pure component pervaporation data and from literature adsorption coefficients. The Vignes equation is used to describe the concentration dependency of the mutual diffusion coefficient. The model allows a good quantitative prediction of the ethanol–water, isopropanol–water and ethanol–methanol mixtures, but needs improvement for the isopropanol–methanol and for the butanol mixtures either in water or in methanol.

[1]  Robert Y. M. Huang,et al.  A Pseudophase-Change Solution-Diffusion Model for Pervaporation. I. Single Component Permeation , 1998 .

[2]  Wojciech Kujawski,et al.  Ethanol production from lactose in a fermentation/pervaporation system , 2007 .

[3]  J. Degrève,et al.  Transport of Binary Mixtures in Pervaporation through a Microporous Silica Membrane: Shortcomings of Fickian Models , 2007 .

[4]  Tang Bin,et al.  Selective ethanol extraction from fermentation broth using a silicalite membrane , 2002 .

[5]  Shenlin Zhu,et al.  Sulfur removal from gasoline by pervaporation: The effect of hydrocarbon species , 2006 .

[6]  T. Melin,et al.  Performance evaluation of microporous inorganic membranes in the dehydration of industrial solvents , 2005 .

[7]  Sang Cheol Lee Prediction of permeation behavior of CO2 and CH4 through silicalite-1 membranes in single-component or binary mixture systems using occupancy-dependent Maxwell-Stefan diffusivities , 2007 .

[8]  J. Degrève,et al.  Pervaporation of Binary and Ternary Mixtures of Water with Methanol and/or Ethanol , 2005 .

[9]  L. Vane,et al.  Field demonstration of pervaporation for the separation of volatile organic compounds from a surfactant-based soil remediation fluid. , 2001, Journal of hazardous materials.

[10]  I. Ortiz,et al.  Comparison of SiO2-ZrO2-50% and commercial SiO2 membranes on the pervaporative dehydration of organic solvents , 2006 .

[11]  E. Drioli,et al.  Bergamot essential oil extraction by pervaporation , 2006 .

[12]  L. M. F. D. Santos,et al.  Dehydration of water/t-butanol mixtures by pervaporation: comparative study of commercially available polymeric, microporous silica and zeolite membranes , 2002 .

[13]  Frank Lipnizki,et al.  Pervaporation-based hybrid process: a review of process design, applications and economics , 1999 .

[14]  Freek Kapteijn,et al.  On the Driving Force of Methanol Pervaporation through a Microporous Methylated Silica Membrane , 2007 .

[15]  AW Arjan Verkerk Application of silica membranes in separations and hybrid reactor systems , 2003 .

[16]  Frank Lipnizki,et al.  MODELLING OF PERVAPORATION: MODELS TO ANALYZE AND PREDICT THE MASS TRANSPORT IN PERVAPORATION , 2001 .

[17]  Pierre Lochon,et al.  Industrial state-of-the-art of pervaporation and vapour permeation in the western countries , 2002 .

[18]  Richard W. Baker,et al.  A simple predictive treatment of the permeation process in pervaporation , 1993 .

[19]  Ross Taylor,et al.  Multicomponent mass transfer , 1993 .

[20]  Luisa M. Freitas dos Santos,et al.  Comparative study of commercially available polymeric and microporous silica membranes for the dehydration of IPA/water mixtures by pervaporation/vapour permeation☆ , 2002 .

[21]  L. Vane,et al.  CFD simulation of effect of baffle on mass transfer in a slit-type pervaporation module , 2005 .

[22]  Cristiano Piacsek Borges,et al.  Pervaporative recovery of volatile aroma compounds from fruit juices , 2006 .

[23]  Jianhua Yang,et al.  Pervaporation characteristics of aqueous-organic solutions with microporous SiO2-ZrO2 membranes : Experimental study on separation mechanism , 2006 .

[24]  Sundergopal Sridhar,et al.  Separation of organic–organic mixtures by pervaporation—a review , 2004 .

[25]  P. Izák,et al.  Description of binary liquid mixtures transport through non-porous membrane by modified Maxwell–Stefan equations , 2003 .

[26]  F. Kapteijn,et al.  Transport and separation properties of a silicalite-1 membrane—I. Operating conditions , 1999 .

[27]  G. W. Meindersma,et al.  Economical feasibility of zeolite membranes for industrial scale separations of aromatic hydrocarbons , 2002 .

[28]  T. Melin,et al.  Influence of operation parameters on the separation of mixtures by pervaporation and vapor permeation with inorganic membranes. Part 1: Dehydration of solvents , 2005 .

[29]  J. E. Elshof,et al.  Separation mechanism in dehydration of water/organic binary liquids by pervaporation through microporous silica , 2005 .

[30]  Jtf Jos Keurentjes,et al.  Properties of high flux ceramic pervaporation membranes for dehydration of alcohol/water mixtures , 2001 .

[31]  H. M. Veen,et al.  Dewatering of organics by pervaporation with silica membranes , 2001 .

[32]  B. Adhikari,et al.  Pervaporation separation of aqueous chlorophenols by a novel polyurethane urea–poly (methyl methacrylate) interpenetrating network membrane , 2006 .

[33]  Jtf Jos Keurentjes,et al.  Hollow fibre microporous silica membranes for gas separation and pervaporation: synthesis, performance and stability , 2005 .

[34]  Xianshe Feng,et al.  Liquid Separation by Membrane Pervaporation: A Review , 1997 .

[35]  Olivera Trifunović,et al.  The influence of process parameters on aroma recovery by hydrophobic pervaporation , 2006 .

[36]  R. Aldaco,et al.  Modeling of pervaporation processes controlled by concentration polarization , 2007, Comput. Chem. Eng..

[37]  R. Krishna,et al.  The Maxwell-Stefan approach to mass transfer , 1997 .

[38]  F. P. Cuperus,et al.  Newly developed ceramic membranes for dehydration and separation of organic mixtures by pervaporation , 1995 .

[39]  Jtf Jos Keurentjes,et al.  Description of dehydration performance of amorphous silica pervaporation membranes , 2001 .

[40]  L. Takács,et al.  Production of alcohol free wine by pervaporation , 2007 .

[41]  Lloyd S. White,et al.  Development of large-scale applications in organic solvent nanofiltration and pervaporation for chemical and refining processes , 2006 .

[42]  P. Izáka,et al.  Description of binary liquid mixtures transport through non-porous membrane by modified Maxwell – Stefan equations , 2003 .

[43]  A. Heintz,et al.  A generalized solution—diffusion model of the pervaporation process through composite membranes Part II. Concentration polarization, coupled diffusion and the influence of the porous support layer , 1994 .

[44]  Robert Y. M. Huang,et al.  Polymeric membrane pervaporation , 2007 .

[45]  I. Ortiz,et al.  Pervaporative dehydration of organic mixtures using a commercial silica membrane: Determination of kinetic parameters , 2005 .

[46]  Bart Van der Bruggen,et al.  Simulation of a hybrid pervaporation-distillation process , 2008, Comput. Chem. Eng..

[47]  Robert Y. M. Huang,et al.  A Pseudophase-Change Solution-Diffusion Model for Pervaporation. II. Binary Mixture Permeation , 1998 .

[48]  Regine Apostel,et al.  Membranes based on polyelectrolyte–surfactant complexes for methanol separation , 2001 .

[49]  F. Kapteijn,et al.  The generalized Maxwell–Stefan model for diffusion in zeolites:: sorbate molecules with different saturation loadings , 2000 .

[50]  Rajamani Krishna,et al.  Insights into diffusion of gases in zeolites gained from molecular dynamics simulations , 2008 .

[51]  J. Falconer,et al.  Modeling transient permeation of polar organic mixtures through a MFI zeolite membrane using the Maxwell-Stefan equations , 2007 .

[52]  Multicomponent transport across nonporous polymeric membranes , 2002 .

[53]  Frank Lipnizki,et al.  Organophilic pervaporation: prospects and performance , 1999 .

[54]  H. Kita,et al.  The first large-scale pervaporation plant using tubular-type module with zeolite NaA membrane , 2001 .

[55]  F. P. Cuperus,et al.  Dehydration using ceramic silica pervaporation membranes—the influence of hydrodynamic conditions , 2002 .

[56]  L. Vane,et al.  Recent advances in VOCs removal from water by pervaporation. , 2003, Journal of hazardous materials.

[57]  J. E. Elshof,et al.  Transport mechanisms of water and organic solvents through microporous silica in the pervaporation of binary liquids , 2003 .

[58]  Zhibing Zhang,et al.  Pervaporation of alcoholic beverages—the coupling effects between ethanol and aroma compounds , 2005 .

[59]  J. Villaluenga,et al.  A review on the separation of benzene/cyclohexane mixtures by pervaporation processes , 2000 .

[60]  G. W. Meindersma,et al.  Implementing membrane technology in the process industry : problems and opportunities , 1996 .