Coupling erbium dopants in yttrium orthosilicate to silicon photonic resonators and waveguides.

A scalable platform for on-chip optical quantum networks will rely on standard top-down nanofabrication techniques and solid-state emitters with long coherence times. We present a new hybrid platform that integrates amorphous silicon photonic waveguides and microresonators fabricated on top of a yttrium orthosilicate substrate doped with erbium ions. The quality factor of one such resonator was measured to exceed 100,000 and the ensemble cooperativity was measured to be 0.54. The resonator-coupled ions exhibited spontaneous emission rate enhancement and increased coupling to the input field, as required for further development of on-chip quantum light-matter interfaces.

[1]  Andrei Faraon,et al.  Interfacing broadband photonic qubits to on-chip cavity-protected rare-earth ensembles , 2016, Nature Communications.

[2]  D. Bouwmeester,et al.  Multidimensional Purcell effect in an ytterbium-doped ring resonator , 2016, Nature Photonics.

[3]  Roberto Osellame,et al.  An integrated optical memory based on laser written waveguides , 2015, 2016 Conference on Lasers and Electro-Optics (CLEO).

[4]  Evan Miyazono,et al.  High quality factor nanophotonic resonators in bulk rare-earth doped crystals. , 2015, Optics express.

[5]  Jonathan M. Kindem,et al.  Coupling of erbium dopants to yttrium orthosilicate photonic crystal cavities for on-chip optical quantum memories , 2015, 1512.07389.

[6]  Mikhail D. Lukin,et al.  Narrow-linewidth homogeneous optical emitters in diamond nanostructures via silicon ion implantation , 2015, 1512.03820.

[7]  Jonathan M. Kindem,et al.  Nanophotonic coherent light–matter interfaces based on rare-earth-doped crystals , 2015, Nature Communications.

[8]  S. Madden,et al.  Observation of Photon Echoes From Evanescently Coupled Rare-Earth Ions in a Planar Waveguide. , 2015, Physical review letters.

[9]  Manjin Zhong,et al.  Optically addressable nuclear spins in a solid with a six-hour coherence time , 2015, Nature.

[10]  Wolfgang Tittel,et al.  Quantum storage of entangled telecom-wavelength photons in an erbium-doped optical fibre , 2014, Nature Photonics.

[11]  R. Blatt,et al.  Quantum information transfer using photons , 2014, Nature Photonics.

[12]  Christoph Simon,et al.  Prospective applications of optical quantum memories , 2013, 1306.6904.

[13]  J. Rarity,et al.  Photonic quantum technologies , 2009, 1003.3928.

[14]  Bob B. Buckley,et al.  Room temperature coherent control of defect spin qubits in silicon carbide , 2011, Nature.

[15]  T. Chanelière,et al.  Revival of silenced echo and quantum memory for light , 2011, 1104.4875.

[16]  D. Korystov,et al.  Coherent spectroscopy of rare-earth-metal-ion-doped whispering-gallery-mode resonators , 2011, 1104.4150.

[17]  F. Bussières,et al.  Broadband waveguide quantum memory for entangled photons , 2010, Nature.

[18]  Edo Waks,et al.  Cavity QED treatment of interactions between a metal nanoparticle and a dipole emitter , 2010 .

[19]  Christoph Simon,et al.  Impedance-matched cavity quantum memory , 2010, 1004.2469.

[20]  Steven G. Johnson,et al.  Meep: A flexible free-software package for electromagnetic simulations by the FDTD method , 2010, Comput. Phys. Commun..

[21]  Christoph Simon,et al.  Telecommunication-wavelength solid-state memory at the single photon level. , 2009, Physical review letters.

[22]  B. Sanders,et al.  Optical quantum memory , 2009, 1002.4659.

[23]  D. L. McAuslan,et al.  Strong-coupling cavity QED using rare-earth-metal-ion dopants in monolithic resonators: What you can do with a weak oscillator , 2009, 0908.1994.

[24]  Charles Santori,et al.  Hybrid photonic crystal cavity and waveguide for coupling to diamond NV-centers. , 2009, Optics express.

[25]  Rufus L. Cone,et al.  Effects of Magnetic Field Orientation on Optical Decoherence in Er3+: Y2 SiO5 , 2009 .

[26]  Christoph Simon,et al.  A solid-state light–matter interface at the single-photon level , 2008, Nature.

[27]  N. Gisin,et al.  State preparation by optical pumping in erbium-doped solids using stimulated emission and spin mixing , 2008, 0808.3537.

[28]  N. Gisin,et al.  Zeeman-level lifetimes in Er 3+ :Y 2 SiO 5 , 2008 .

[29]  H. J. Kimble,et al.  The quantum internet , 2008, Nature.

[30]  C. Thiel,et al.  Spectroscopy and Dynamics of Er3+: Y2 Si O5 at 1.5 μM , 2006 .

[31]  J. Longdell,et al.  Photon echoes produced by switching electric fields. , 2005, Physical review letters.

[32]  M. Nilsson,et al.  Quantum memory for nonstationary light fields based on controlled reversible inhomogeneous broadening , 2005, quant-ph/0502184.

[33]  Hyatt M. Gibbs,et al.  Scanning a photonic crystal slab nanocavity by condensation of xenon , 2005 .