Uniform Complexity and Digital Signatures

A concept of uniform complexity is defined and a class of functions is shown to have uniform complexity. A special case of these results is used to develop a new digital signature method, which makes forging signatures as hard as factoring a large number and which allows to sign all messages directly. The signature production involves only one exponentiation modulo a large number and the signature checking the comparison of a fourth and a second power modulo a large number. Therefore this new method is faster than known methods with the same degree of safety.

[1]  Abraham Lempel,et al.  Cryptology in Transition , 1979, CSUR.

[2]  Jerome H. Saltzer,et al.  On digital signatures , 1978, OPSR.

[3]  Adi Shamir,et al.  On the cryptocomplexity of knapsack systems , 1979, STOC.

[4]  H. C. Williams,et al.  Some remarks concerning the M.I.T. public-key cryptosystem , 1979 .

[5]  Hugh C. Williams,et al.  A modification of the RSA public-key encryption procedure (Corresp.) , 1980, IEEE Trans. Inf. Theory.

[6]  Adi Shamir,et al.  A method for obtaining digital signatures and public-key cryptosystems , 1978, CACM.

[7]  Gustavus J. Simmons,et al.  Symmetric and Asymmetric Encryption , 1979, CSUR.

[8]  Leonard M. Adleman,et al.  Reducibility, randomness, and intractibility (Abstract) , 1977, STOC '77.

[9]  Michael O. Rabin Complexity of computations , 1977, CACM.

[10]  Whitfield Diffie,et al.  New Directions in Cryptography , 1976, IEEE Trans. Inf. Theory.

[11]  Donald Ervin Knuth,et al.  The Art of Computer Programming , 1968 .

[12]  John T. Gill,et al.  Computational complexity of probabilistic Turing machines , 1974, STOC '74.

[13]  Gerald J. Popek,et al.  Encryption and Secure Computer Networks , 1979, CSUR.

[14]  Michael O. Rabin,et al.  Probabilistic Algorithms in Finite Fields , 1980, SIAM J. Comput..

[15]  Adi Shamir A Fast Signature Scheme , 1978 .

[16]  Martin E. Hellman,et al.  Hiding information and signatures in trapdoor knapsacks , 1978, IEEE Trans. Inf. Theory.

[17]  E. Berlekamp Factoring polynomials over large finite fields* , 1970, SYMSAC '71.