Design of Optimal Sequential Experiments to Improve Model Predictions from a Polyethylene Molecular Weight Distribution Model

Reliable model predictions require an appropriate model structure and also good parameter estimates. For good parameter estimates to be obtained, it is important that the data used in parameter estimation are informative. Alphabet-optimal experimental designs can be used to ensure that new experiments are as informative as possible. This work presents the development of D- and A-optimal sequential experimental designs for improving parameter precision in a molecular-weight-distribution model for ZieglerNatta-catalyzed polyethylene. Novel V-optimal designs techniques are developed to improve the precision of model predictions, and anticipated benefits are quantified. Problems with local minima are discussed and comparisons between the optimality criteria are made.

[1]  Jozef Bicerano,et al.  Prediction of Polymer Properties , 1996 .

[2]  W. Welch Computer-Aided Design of Experiments for Response Estimation , 1984 .

[3]  D. Ucinski,et al.  T‐optimum designs for discrimination between two multiresponse dynamic models , 2005 .

[4]  O. Dykstra The Augmentation of Experimental Data to Maximize [X′X] , 1971 .

[5]  Y. A. Liu,et al.  Steady-State and Dynamic Modeling of Commercial Slurry High-Density Polyethylene (HDPE) Processes , 2002 .

[6]  Marcelo Embiruçu,et al.  Modeling of end-use properties of poly(propylene/ethylene) resins , 2001 .

[7]  André I. Khuri,et al.  Response surface methodology: 1966–1988 , 1989 .

[8]  João B. P. Soares,et al.  Deconvolution of chain-length distributions of linear polymers made by multiple-site-type catalysts , 1995 .

[9]  J. Dirion,et al.  Kinetic parameter estimation from TGA: Optimal design of TGA experiments , 2008 .

[10]  Vinay Prasad,et al.  Multiscale Model and Informatics-Based Optimal Design of Experiments : Application to the Catalytic Decomposition of Ammonia on Ruthenium , 2008 .

[11]  Anthony C. Atkinson,et al.  Beyond response surfaces: recent developments in optimum experimental design , 1995 .

[12]  Thomas J. Harris,et al.  The use of simplified or misspecified models : Linear case , 2008 .

[13]  A. R. Manson,et al.  Minimum Bias Estimation and Experimental Design for Response Surfaces , 1969 .

[14]  J. Macgregor,et al.  A kinetic model for industrial gas-phase ethylene copolymerization , 1990 .

[15]  K Bernaerts,et al.  Accurate estimation of cardinal growth temperatures of Escherichia coli from optimal dynamic experiments. , 2008, International journal of food microbiology.

[16]  Douglas C. Montgomery,et al.  Response Surface Methodology: Process and Product Optimization Using Designed Experiments , 1995 .

[17]  David W. Bacon,et al.  Modeling molecular weight development of gas‐phase α‐olefin copolymerization , 1995 .

[18]  P. McLellan,et al.  Exploring Reaction Kinetics of a Multi-Site Ziegler-Natta Catalyst Using Deconvolution of Molecular Weight Distributions for Ethylene-Hexene Copolymers , 2007 .

[19]  S. Silvey,et al.  Optimal regression designs with previous observations , 1970 .

[20]  P. James McLellan,et al.  A Simplified Model for Prediction of Molecular Weight Distributions in Ethylene‐Hexene Copolymerization Using Ziegler‐Natta Catalysts , 2007 .

[21]  Sandro Macchietto,et al.  Model-based design of experiments for parameter precision: State of the art , 2008 .

[22]  Barbara Bogacka,et al.  D- and T-optimum designs for the kinetics of a reversible chemical reaction , 1998 .

[23]  R. Baker,et al.  Interior Point Solution of Multilevel Quadratic Programming Problems in Constrained Model Predictive Control Applications , 2008 .

[24]  Malcolm Rowland,et al.  Optimal Design for Multivariate Response Pharmacokinetic Models , 2006, Journal of Pharmacokinetics and Pharmacodynamics.

[25]  Eva Balsa-Canto,et al.  Optimal design of dynamic experiments for improved estimation of kinetic parameters of thermal degradation , 2007 .

[26]  C. Kiparissides,et al.  A multi-scale modeling approach for the prediction of molecular and morphological properties in multi-site catalyst, olefin polymerization reactors , 2005 .

[27]  P. Rao,et al.  Some Notes on Misspecification in Multiple Regressions , 1971 .

[28]  Raymond H. Myers,et al.  Response Surface Methodology--Current Status and Future Directions , 1999 .

[29]  Shuangzhe Liu,et al.  A V-optimal design for Scheffé's polynomial model , 1995 .

[30]  William G. Hunter,et al.  Designs for Discriminating Between Two Rival Models , 1965 .

[31]  A. R. Manson,et al.  Optimal Experimental Designs in Two Dimensions Using Minimum Bias Estimation , 1978 .

[32]  W. DuMouchel,et al.  A simple Bayesian modification of D-optimal designs to reduce dependence on an assumed model , 1994 .

[33]  Y. Kissin Isospecific Polymerization of Olefins: With Heterogeneous Ziegler-Natta Catalysts , 1985 .

[34]  G. Box,et al.  A Basis for the Selection of a Response Surface Design , 1959 .

[35]  T. P. Ryan,et al.  Modern Experimental Design , 2007 .

[36]  Martina Vandebroek,et al.  Bayesian sequential D-D optimal model-robust designs , 2004, Comput. Stat. Data Anal..

[37]  J. Timmer,et al.  Systems biology: experimental design , 2009, The FEBS journal.

[38]  Archie E. Hamielec,et al.  A kinetic mathematical model for heterogeneous Ziegler-Natta copolymerization , 1989 .

[39]  Norman R. Draper,et al.  Designs for minimum bias estimation , 1988 .

[40]  Bernard De Baets,et al.  An anticipatory approach to optimal experimental design for model discrimination , 2009 .

[41]  H. Wynn The Sequential Generation of $D$-Optimum Experimental Designs , 1970 .

[42]  Bruno Boulanger,et al.  Optimal designs for inverse prediction in univariate nonlinear calibration models , 2004 .

[43]  A. Hendrickson,et al.  A Method for Constructing an Optimal Regression Design After an Initial Set of Input Values Has Been Selected , 1973 .

[44]  Thomas P. Ryan,et al.  Modern Experimental Design: Ryan/Experimental Design , 2007 .

[45]  C. Kiparissides,et al.  Gas-Phase Olefin Polymerization in the Presence of Supported and Self-Supported Ziegler-Natta Catalysts , 2008 .

[46]  P. James McLellan,et al.  Parameter Estimation in a Simplified MWD Model for HDPE Produced by a Ziegler‐Natta Catalyst , 2009 .

[47]  R. C. St. John,et al.  D-Optimality for Regression Designs: A Review , 1975 .

[48]  K. S. Brown,et al.  Optimal experimental design in an epidermal growth factor receptor signalling and down-regulation model. , 2007, IET systems biology.

[49]  Peter D. H. Hill,et al.  A Review of Experimental Design Procedures for Regression Model Discrimination , 1978 .

[50]  Alexander Penlidis,et al.  A Protocol for the Estimation of Parameters in Process Models: Case Studies with Polymerization Scenarios , 2004 .

[51]  Lorenz T. Biegler,et al.  On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming , 2006, Math. Program..

[52]  Y. Kissin Isospecific Polymerization of Olefins , 1985 .

[53]  Klaus Schittkowski,et al.  Experimental Design Tools for Ordinary and Algebraic Differential Equations , 2007 .

[54]  O. Krafft,et al.  D-optimal designs for a multivariate regression model , 1992 .