A binary particle swarm optimization for continuum structural topology optimization

The particle swarm optimization (PSO) algorithm, a relatively recent bio-inspired approach to solve combinatorial optimization problems mimicking the social behavior of birds flocking, is applied to problems of continuum structural topology design for the purpose of investigating optimal topologies and automatically creating innovative solutions. An overview of the PSO and binary PSO algorithms are first described. A discretized topology design representation and the method for mapping binary particle into this representation are then detailed. Subsequently, a modified binary PSO algorithm that adopts the concept of genotype-phenotype representation is illustrated. Several well-studied examples from structural topology optimization problems of minimum weight and minimum compliance are used to demonstrate its efficiency and versatility. The results indicate the effectiveness of the proposed algorithm and its ability to find families of structural topologies.

[1]  Jingqi Fu,et al.  A Novel Probability Binary Particle Swarm Optimization Algorithm and Its Application , 2008, J. Softw..

[2]  Riccardo Poli,et al.  Particle swarm optimization , 1995, Swarm Intelligence.

[3]  M. Bendsøe,et al.  Generating optimal topologies in structural design using a homogenization method , 1988 .

[4]  M. Jakiela,et al.  Continuum structural topology design with genetic algorithms , 2000 .

[5]  E. Douglas Jensen,et al.  Topological Structural Design using Genetic Algorithms , 1992 .

[6]  E. Hinton,et al.  Comparisons between algorithms for structural topology optimization using a series of benchmark studies , 2001 .

[7]  Geoffrey T. Parks,et al.  Metamorphic development: a new topology optimization method for continuum structures , 2000 .

[8]  Guan-Chun Luh,et al.  Multi-modal topological optimization of structure using immune algorithm , 2004 .

[9]  Pasi Tanskanen,et al.  The evolutionary structural optimization method: theoretical aspects , 2002 .

[10]  Mark J. Jakiela,et al.  Generation and Classification of Structural Topologies With Genetic Algorithm Speciation , 1997 .

[11]  Russell C. Eberhart,et al.  A new optimizer using particle swarm theory , 1995, MHS'95. Proceedings of the Sixth International Symposium on Micro Machine and Human Science.

[12]  Niels Olhoff,et al.  Topology optimization of continuum structures: A review* , 2001 .

[13]  G. Allaire,et al.  Optimal design for minimum weight and compliance in plane stress using extremal microstructures , 1993 .

[14]  Russell C. Eberhart,et al.  A discrete binary version of the particle swarm algorithm , 1997, 1997 IEEE International Conference on Systems, Man, and Cybernetics. Computational Cybernetics and Simulation.

[15]  K N Krishnanand,et al.  Glowworm Swarm Optimization : A Multimodal Function Optimization Paradigm With Applications To Multiple Signal Source Localization Tasks , 2007 .

[16]  J. E. Akin,et al.  Enhancing structural topology optimization , 2001 .

[17]  Seog-Young Han A new element removal method for topology optimization , 2000 .

[18]  Souran Manoochehri,et al.  GENERATING OPTIMAL CONFIGURATIONS IN STRUCTURAL DESIGN USING SIMULATED ANNEALING , 1997 .

[19]  Yi Min Xie,et al.  Optimal topology selection of continuum structures with displacement constraints , 2000 .

[20]  Ajith Abraham,et al.  Swarm Intelligence: Foundations, Perspectives and Applications , 2006, Swarm Intelligent Systems.

[21]  Nadia Nedjah,et al.  Swarm Intelligent Systems (Studies in Computational Intelligence) , 2006 .

[22]  Yue Shi,et al.  A modified particle swarm optimizer , 1998, 1998 IEEE International Conference on Evolutionary Computation Proceedings. IEEE World Congress on Computational Intelligence (Cat. No.98TH8360).

[23]  Mehmet Fatih Tasgetiren,et al.  A discrete particle swarm optimization algorithm for the no-wait flowshop scheduling problem , 2008, Comput. Oper. Res..

[24]  Guan-Chun Luh,et al.  Structural topology optimization using ant colony optimization algorithm , 2009, Appl. Soft Comput..

[25]  Witold Pedrycz,et al.  Modified binary particle swarm optimization , 2008 .

[26]  G. Rozvany Aims, scope, methods, history and unified terminology of computer-aided topology optimization in structural mechanics , 2001 .

[27]  Steen Kibsgaard,et al.  Sensitivity analysis : The basis for optimization , 1992 .

[28]  Tomasz Arciszewski,et al.  Evolutionary computation and structural design: A survey of the state-of-the-art , 2005 .

[29]  Guo-Li Shen,et al.  Modified particle swarm optimization algorithm for variable selection in MLR and PLS modeling: QSAR studies of antagonism of angiotensin II antagonists. , 2004, European journal of pharmaceutical sciences : official journal of the European Federation for Pharmaceutical Sciences.

[30]  Siamak Talatahari,et al.  Particle swarm optimizer, ant colony strategy and harmony search scheme hybridized for optimization of truss structures , 2009 .

[31]  Yi Min Xie,et al.  Evolutionary Structural Optimization , 1997 .

[32]  M. Jakiela,et al.  Genetic algorithm-based structural topology design with compliance and topology simplification considerations , 1996 .

[33]  George I. N. Rozvany,et al.  On the validity of ESO type methods in topology optimization , 2001 .

[34]  M. Y. Wang,et al.  An enhanced genetic algorithm for structural topology optimization , 2006 .

[35]  Feng Liu,et al.  A heuristic particle swarm optimization method for truss structures with discrete variables , 2009 .

[36]  Peter J. Angeline,et al.  Evolutionary Optimization Versus Particle Swarm Optimization: Philosophy and Performance Differences , 1998, Evolutionary Programming.

[37]  James Kennedy,et al.  Particle swarm optimization , 2002, Proceedings of ICNN'95 - International Conference on Neural Networks.

[38]  Y. Xie,et al.  A simple evolutionary procedure for structural optimization , 1993 .

[39]  Russell C. Eberhart,et al.  Parameter Selection in Particle Swarm Optimization , 1998, Evolutionary Programming.

[40]  R. Balamurugan,et al.  Performance evaluation of a two stage adaptive genetic algorithm (TSAGA) in structural topology optimization , 2008, Appl. Soft Comput..

[41]  Kazuhiro Saitou,et al.  Genetic algorithms as an approach to configuration and topology design , 1994, DAC 1993.