Metallic samarium and iodine promoted facile and efficient syntheses of trisubstituted alkenes from the acetates of Baylis–Hillman adducts

[1]  Yongming Zhang,et al.  SmI2-mediated elimination reaction of Baylis–Hillman adducts controlled by temperature: a facile synthesis of trisubstituted alkenes and 1,5-hexadiene derivatives with E-stereoselectivity , 2004 .

[2]  J. Banerjee,et al.  Convenient and efficient stereoselective synthesis of (2Z)-2-(chloromethyl)alk-2-enoates using iron(III) or indium(III) chloride ☆ , 2004 .

[3]  G. Kabalka,et al.  Palladium-catalyzed cross-coupling of acetates of Baylis-Hillman adducts and potassium organotrifluoroborates. , 2003, Organic letters.

[4]  K. Nicholas,et al.  Synthesis of 3-substituted quinolines via transition-metal-catalyzed reductive cyclization of o-nitro Baylis-Hillman acetates. , 2003, The Journal of organic chemistry.

[5]  G. Kabalka,et al.  Preparation of substituted allyl acetates and sulfones from Baylis–Hillman adducts in ionic liquid media , 2003 .

[6]  D. Basavaiah,et al.  Recent advances in the Baylis-Hillman reaction and applications. , 2003, Chemical reviews.

[7]  Jae Nyoung Kim,et al.  Regioselective allylic amination of the Baylis-Hillman adducts: An easy and practical access to the Baylis-Hillman adducts of N-tosylimines , 2002 .

[8]  Lei Wang,et al.  A novel reduction of sodium alkyl thiosulfates using samarium metal without an activating agent in water , 2002 .

[9]  B. Banik Samarium Metal in Organic Synthesis , 2002 .

[10]  T. Kim,et al.  Synthesis of ethyl 3-cyano-2-methylcinnamates and 3-cyano-2-methylcinnamonitriles from the Baylis–Hillman acetates , 2001 .

[11]  U. Shadakshari,et al.  Reductive dehydroxylation of Baylis–Hillman adducts with low-valent titanium reagent: syntheses of stereoselective trisubstituted alkenes , 2001 .

[12]  M. Shi,et al.  Titanium(IV) chloride and quaternary ammonium salt promoted Baylis-Hillman reaction. , 2001, The Journal of organic chemistry.

[13]  Y. D. Vankar,et al.  Palladium catalysed regio and stereoselective reduction of Baylis-Hillman coupling products derived allylic acetates , 1998 .

[14]  M. Bakthadoss,et al.  A new protocol for the syntheses of (E)-3-benzylidenechroman-4-ones: a simple synthesis of the methyl ether of bonducellin , 1998 .

[15]  S. K. Kamat,et al.  FACILE SYNTHESIS OF 2Z-2-CHLOROMETHYL ARYL-2-ENOATES , 1997 .

[16]  R. Yanada,et al.  Reductive coupling of carbonyl compounds to pinacols by using SmI2MeOH or SmI2Ti(OiPr)4MeOH systems , 1997 .

[17]  P. D. Rao,et al.  THE BAYLIS-HILLMAN REACTION : A NOVEL CARBON-CARBON BOND FORMING REACTION , 1996 .

[18]  H Nakai,et al.  New orally active serine protease inhibitors. , 1995, Journal of Medicinal Chemistry.

[19]  M. Lautens,et al.  Diastereoselectivity in the Cyclopropanation of 3,3-Bimetallic Allylic Alcohols. Preparation of Diastereomeric Cyclopropyl Carbinols via a Simple Oxidation-Reduction Sequence , 1995 .

[20]  D. Basavaiah,et al.  Baylis-Hillman reaction: Magnesium bromide as a stereoselective reagent for the synthesis of [E]- and [Z]-allyl bromides , 1995 .

[21]  I. Marek,et al.  Phenylthioacetylene as a source of stereodefined trisubstituted alkenes , 1994 .

[22]  S. Denmark,et al.  A New, General, and Stereoselective Method for the Synthesis of Trisubstituted Alkenes , 1993 .

[23]  M. Garson The biosynthesis of marine natural products , 1993 .

[24]  D. Basavaiah,et al.  Applications of Baylis–Hillman coupling products: a remarkable reversal of stereochemistry from esters to nitriles: a simple synthesis of (2E)-2-methylalk-2-en-1-ols and (2Z)-2-methylalk-2-enenitriles , 1992 .

[25]  R. Buchholz,et al.  α‐Methylidene‐ and α‐Alkylidene‐β‐lactams from Nonproteinogenic Amino Acids , 1991 .

[26]  A. Myers,et al.  Stereoselective synthesis of olefins from silylated sulfonylhydrazones , 1990 .

[27]  H. Taniguchi,et al.  Nucleophilic addition of lanthanoid metal umpoled diaryl ketones to electrophiles , 1988 .

[28]  P. Kocieňski,et al.  A stereoselective synthesis of tri-substituted alkenes. The nickel-catalysed coupling of Grignard reagents with 6-alkyl-3,4-dihydro-2H-pyrans , 1988 .

[29]  J. Rabe,et al.  DABCO-catalyzed coupling of aldehydes with activated double bonds. 4. Stereoselective synthesis of trisubstituted olefins and terpenoid building blocks via 2-(hydroxyalkyl)-2-propenoic esters , 1985 .

[30]  J. Rabe,et al.  Synthesis and Biological Activity of α‐Methylene‐γ‐butyrolactones , 1985 .

[31]  P. T. Kaye,et al.  Necic acid synthons. Part 4. Regioselectivity in the reactions of chloro and lodo derivatives of selected 3-hydroxy-2-methylenealkanoate esters with ethyl 2-methyl-3-oxobutanoate , 1985 .

[32]  J. Rabe,et al.  Preparation of 2‐(1‐Hydroxyalkyl)acrylic Esters; Simple Three‐Step Synthesis of Mikanecic Acid , 1983 .

[33]  P. T. Kaye,et al.  Necic acid synthons. Part 2. Regioselectivity in the reactions of Z-2-bromomethyl-2-alkenoate esters with selected carbon nucleophiles , 1983 .

[34]  S. Drewes,et al.  Necic acid synthons. Part 1. Total synthesis of integerrinecic acid , 1982 .

[35]  S. Takeyama,et al.  Studies of hypolipidemic agents. 1. Synthesis and hypolipidemic activities of alkoxycinnamic acid derivatives. , 1980, Journal of medicinal chemistry.

[36]  A. Dreiding,et al.  A Specific Synthesis of Ethyl (2Z)‐2‐Bromomethyl‐2‐butenoate and its Conversion into Mikanecic Ester , 1976 .