Comparing a novel automatic 3D method for LGE-CMR quantification of scar size with established methods

Current methods for the estimation of infarct size by late-enhanced cardiac magnetic imaging are based upon 2D analysis that first determines the size of the infarction in each slice, and thereafter adds the infarct sizes from each slice to generate a volume. We present a novel, automatic 3D method that estimates infarct size by a simultaneous analysis of all pixels from all slices. In a population of 54 patients with ischemic scars, the infarct size estimated by the automatic 3D method was compared with four established 2D methods. The new 3D method defined scar as the sum of all pixels with signal intensity (SI) ≥35 % of max SI from the complete myocardium, border zone: SI 35–50 % of max SI and core as SI ≥50 % of max SI. The 3D method yielded smaller infarct size (−2.8 ± 2.3 %) and core size (−3.0 ± 1.7 %) than the 2D method most similar to ours. There was no difference in the size of the border zone (0.2 ± 1.4 %). The 3D method demonstrated stronger correlations between scar size and left ventricular (LV) remodelling parameters (LV ejection fraction: r = −0.71, p < 0.0005, LV end-diastolic index: r = 0.54, p < 0.0005, and LV end-systolic index: r = 0.59, p < 0.0005) compared with conventional 2D methods. Infarct size estimation by our novel 3D automatic method is without the need for manual demarcation of the scar; it is less time-consuming and has a stronger correlation with remodelling parameters compared with existing methods.

[1]  Douglas G. Altman,et al.  Measurement in Medicine: The Analysis of Method Comparison Studies , 1983 .

[2]  Katja Zeppenfeld,et al.  Infarct Tissue Heterogeneity Assessed With Contrast-Enhanced MRI Predicts Spontaneous Ventricular Arrhythmia in Patients With Ischemic Cardiomyopathy and Implantable Cardioverter-Defibrillator , 2009, Circulation. Cardiovascular imaging.

[3]  Pierre Croisille,et al.  Assessment of myocardial fibrosis with cardiovascular magnetic resonance. , 2011, Journal of the American College of Cardiology.

[4]  Katherine C. Wu,et al.  Infarct Tissue Heterogeneity by Magnetic Resonance Imaging Identifies Enhanced Cardiac Arrhythmia Susceptibility in Patients With Left Ventricular Dysfunction , 2007, Circulation.

[5]  K. Engan,et al.  The heart rate of ventricular tachycardia following an old myocardial infarction is inversely related to the size of scarring. , 2011, Europace : European pacing, arrhythmias, and cardiac electrophysiology : journal of the working groups on cardiac pacing, arrhythmias, and cardiac cellular electrophysiology of the European Society of Cardiology.

[6]  Dan W Rettmann,et al.  Accurate and Objective Infarct Sizing by Contrast-enhanced Magnetic Resonance Imaging in a Canine Myocardial Infarction Model , 2022 .

[7]  W. Stevenson,et al.  Characterization of the Peri-Infarct Zone by Contrast-Enhanced Cardiac Magnetic Resonance Imaging Is a Powerful Predictor of Post–Myocardial Infarction Mortality , 2006, Circulation.

[8]  Daniel C. Lee,et al.  CMR for sudden cardiac death risk stratification: are we there yet? , 2013, JACC. Cardiovascular imaging.

[9]  O. J. Greve,et al.  Microvascular obstruction is a major determinant of infarct healing and subsequent left ventricular remodelling following primary percutaneous coronary intervention. , 2009, European heart journal.