An Introduction to Model-Based Geostatistics

The term geostatistics identifies the part of spatial statistics which is concerned with continuous spatial variation, in the following sense. The scientific focus is to study a spatial phenomenon, s(x)say, which exists throughout a continuous spatial region A ⊂ ℝ2 and can be treated as if it were a realisation of a stochastic process S(·) = {S(x): x ∈ A}. In general, S(·) is not directly observable. Instead, the available data consist of measurements Y 1,..., Y n taken at locations x 1,..., x n sampled within A, and Y i is a noisy version of S(x i ). We shall assume either that the sampling design for x 1,..., x n is deterministic or that it is stochastic but independent of the process S(·), and all analyses are carried out conditionally on x 1,...,x n .

[1]  Henning Omre,et al.  The Bayesian bridge between simple and universal kriging , 1989 .

[2]  John T. Kent,et al.  Continuity Properties for Random Fields , 1989 .

[3]  J. Zidek,et al.  Interpolation with uncertain spatial covariances: a Bayesian alternative to Kriging , 1992 .

[4]  J. Zidek,et al.  Designing and integrating composite networks for monitoring multivariate gaussian pollution fields , 2000 .

[5]  Michael L. Stein,et al.  Interpolation of spatial data , 1999 .

[6]  J. Chilès,et al.  Geostatistics: Modeling Spatial Uncertainty , 1999 .

[7]  Kanti V. Mardia,et al.  On multimodality of the likelihood in the spatial linear model , 1989 .

[8]  P. Diggle,et al.  Bayesian Inference in Gaussian Model-based Geostatistics , 2002 .

[9]  N. Breslow,et al.  Approximate inference in generalized linear mixed models , 1993 .

[10]  Brian D. Ripley,et al.  Problems with likelihood estimation of covariance functions of spatial Gaussian processes , 1987 .

[11]  Dietrich Stoyan,et al.  On Variograms in Point Process Statistics , 1996 .

[12]  J. Berger,et al.  Objective Bayesian Analysis of Spatially Correlated Data , 2001 .

[13]  Timothy C. Coburn,et al.  Geostatistics for Natural Resources Evaluation , 2000, Technometrics.

[14]  J. Møller,et al.  Geometric Ergodicity of Metropolis-Hastings Algorithms for Conditional Simulation in Generalized Linear Mixed Models , 2001 .

[15]  R. Waagepetersen,et al.  Bayesian Prediction of Spatial Count Data Using Generalized Linear Mixed Models , 2002, Biometrics.

[16]  S. Lele,et al.  A Composite Likelihood Approach to Binary Spatial Data , 1998 .

[17]  P. Whittle ON STATIONARY PROCESSES IN THE PLANE , 1954 .

[18]  W. W. Stroup,et al.  A Generalized Linear Model Approach to Spatial Data Analysis and Prediction , 1997 .

[19]  P. Diggle,et al.  Model-based geostatistics (with discussion). , 1998 .

[20]  Roger Woodard,et al.  Interpolation of Spatial Data: Some Theory for Kriging , 1999, Technometrics.

[21]  P. Diggle,et al.  Spatiotemporal prediction for log‐Gaussian Cox processes , 2001 .

[22]  Noel A Cressie,et al.  Statistics for Spatial Data, Revised Edition. , 1994 .

[23]  Hao Zhang On Estimation and Prediction for Spatial Generalized Linear Mixed Models , 2002, Biometrics.

[24]  D. Krige A statistical approach to some basic mine valuation problems on the Witwatersrand, by D.G. Krige, published in the Journal, December 1951 : introduction by the author , 1951 .

[25]  R. Adler,et al.  The Geometry of Random Fields , 1982 .

[26]  T. C. Haas,et al.  Model-based geostatistics. Discussion. Authors' reply , 1998 .

[27]  N. Cressie,et al.  A dimension-reduced approach to space-time Kalman filtering , 1999 .

[28]  R. Kass,et al.  Reference Bayesian Methods for Generalized Linear Mixed Models , 2000 .

[29]  P. Kitanidis Parameter Uncertainty in Estimation of Spatial Functions: Bayesian Analysis , 1986 .

[30]  Peter K. Kitanidis,et al.  Statistical estimation of polynomial generalized covariance functions and hydrologic applications , 1983 .

[31]  P. Brown,et al.  Blur‐generated non‐separable space–time models , 2000 .

[32]  Ross Ihaka,et al.  Gentleman R: R: A language for data analysis and graphics , 1996 .

[33]  Peter J. Diggle,et al.  Analysing Positive-Valued Spatial Data: the Transformed Gaussian Model , 2001 .

[34]  P. McCullagh,et al.  Generalized Linear Models , 1972, Predictive Analytics.

[35]  H. D. Patterson,et al.  Recovery of inter-block information when block sizes are unequal , 1971 .

[36]  M. Stein,et al.  A Bayesian analysis of kriging , 1993 .

[37]  Patrick Brown,et al.  Space–time calibration of radar rainfall data , 2001 .

[38]  J. R. Wallis,et al.  An Approach to Statistical Spatial-Temporal Modeling of Meteorological Fields , 1994 .

[39]  P. Whittle,et al.  Topographic correlation, power-law covariance functions, and diffusion , 1962 .

[40]  J. Zidek,et al.  Bayesian Multivariate Spatial Interpolation with Data Missing by Design , 1997 .

[41]  B. Kedem,et al.  Bayesian Prediction of Transformed Gaussian Random Fields , 1997 .

[42]  Victor De Oliveira,et al.  Bayesian Hot Spot Detection in the Presence of a Spatial Trend: Application to Total Nitrogen Concen , 2002 .

[43]  V. D. Oliveira,et al.  Bayesian prediction of clipped Gaussian random fields , 2000 .

[44]  Martin Schlather,et al.  On the second-order characteristics of marked point processes , 2001 .

[45]  P. Guttorp,et al.  Nonparametric Estimation of Nonstationary Spatial Covariance Structure , 1992 .

[46]  J. Besag,et al.  Bayesian image restoration, with two applications in spatial statistics , 1991 .

[47]  Charles J. Geyer,et al.  Practical Markov Chain Monte Carlo , 1992 .

[48]  J. Zidek,et al.  Multivariate spatial interpolation and exposure to air pollutants , 1994 .

[49]  Dale L. Zimmerman,et al.  Computationally efficient restricted maximum likelihood estimation of generalized covariance functions , 1989 .