On Shuffle Ideals

A shuffle ideal is a language which is a finite union of languages of the form A* a 1 A*...A* a k where A is a finite alphabet and the a i 's are letters. We show how to represent shuffle ideals by special automata and how to compute these representations. We also give a temporal logic characterization of shuffle ideals and we study its expressive power over infinite words. We characterize the complexity of deciding whether a language is a shuffle ideal and we give a new quadratic algorithm for this problem. Finally we also present a characterization by subwords of the minimal automaton of a shuffle ideal and study the complexity of basic operations on shuffle ideals.

[1]  Mustapha Arfi Polynomial operations and hierarchies of concatenation (in French) , 1991 .

[2]  J C Spehner Rapid calculation of shuffles of two words , 1986 .

[3]  Imre Simon,et al.  Piecewise testable events , 1975, Automata Theory and Formal Languages.

[4]  Denis Thérien,et al.  Classification of Finite Monoids: The Language Approach , 1981, Theor. Comput. Sci..

[5]  Thomas Wilke,et al.  Classifying Discrete Temporal Properties , 1999, STACS.

[6]  守屋 悦朗,et al.  J.E.Hopcroft, J.D. Ullman 著, "Introduction to Automata Theory, Languages, and Computation", Addison-Wesley, A5変形版, X+418, \6,670, 1979 , 1980 .

[7]  Wolfgang Thomas,et al.  Classifying Regular Events in Symbolic Logic , 1982, J. Comput. Syst. Sci..

[8]  David E. Radford,et al.  A natural ring basis for the shuffle algebra and an application to group schemes , 1979 .

[9]  Jorge Almeida,et al.  Implicit operations on finite J-trivial semigroups and a conjecture of I. Simon , 1991 .

[10]  S C Kleene,et al.  Representation of Events in Nerve Nets and Finite Automata , 1951 .

[11]  Dominique Perrin,et al.  On the Expressive Power of Temporal Logic , 1993, J. Comput. Syst. Sci..

[12]  Anca Muscholl,et al.  Computing epsilon-free NFA from regular expressions in O(n log2(n)) time , 2000, RAIRO Theor. Informatics Appl..

[13]  Howard Straubing,et al.  Partially ordered finite monoids and a theorem of I , 1988 .

[14]  Sheng Yu,et al.  State Complexity of Regular Languages , 2001, J. Autom. Lang. Comb..

[15]  Alfred V. Aho,et al.  The Design and Analysis of Computer Algorithms , 1974 .

[16]  Graham Higman,et al.  Ordering by Divisibility in Abstract Algebras , 1952 .

[17]  Pierre-Cyrille Héam Some complexity results for polynomial rational expressions , 2003, Theor. Comput. Sci..

[18]  Amir Pnueli,et al.  The temporal logic of programs , 1977, 18th Annual Symposium on Foundations of Computer Science (sfcs 1977).

[19]  Jean Berstel,et al.  Transductions and context-free languages , 1979, Teubner Studienbücher : Informatik.

[20]  Jeffrey D. Ullman,et al.  Introduction to Automata Theory, Languages and Computation , 1979 .

[21]  Johan Anthory Willem Kamp,et al.  Tense logic and the theory of linear order , 1968 .

[22]  Saharon Shelah,et al.  On the temporal analysis of fairness , 1980, POPL '80.

[23]  M. Lothaire,et al.  Combinatorics on words: Frontmatter , 1997 .

[24]  Jacques Stern,et al.  Characterizations of Some Classes of Regular Events , 1985, Theor. Comput. Sci..

[25]  Christian Glaßer,et al.  Level 5/2 of the Straubing-Thérien Hierarchy for Two-Letter Alphabets , 2001, Developments in Language Theory.

[26]  Thomas Wilke,et al.  Temporal logic and semidirect products: an effective characterization of the until hierarchy , 1996, Proceedings of 37th Conference on Foundations of Computer Science.

[27]  C. Siva Ram Murthy,et al.  A constant time string shuffle algorithm on reconfigurable meshes , 1998, Int. J. Comput. Math..

[28]  Howard Straubing,et al.  FINITE SEMIGROUP VARIETIES OF THE FORM V,D , 1985 .

[29]  C. Pandu Rangan,et al.  Efficient Parallel Shuffle Recognition , 1994, Parallel Process. Lett..