On the q -polynomials: a distributed study

In this paper we present a uni1ed distributional study of the classical discrete q-polynomials (in the Hahn’s sense). From the distributional q-Pearson equation we will deduce many of their properties such as the three-term recurrence relations, structure relations, etc. Also several characterizations of such q-polynomials are presented. c

[1]  Mourad E. H. Ismail,et al.  Orthogonal polynomials : theory and practice , 1990 .

[2]  N. J. Fine,et al.  Basic Hypergeometric Series and Applications , 1988 .

[3]  N. Vilenkin,et al.  Representation of Lie groups and special functions , 1991 .

[4]  R. A. Nodarse,et al.  On the q-polynomials on the exponential lattice x(s)= c 1 qs + c 3 , 1999 .

[5]  S. Suslov The theory of difference analogues of special functions of hypergeometric type , 1989 .

[6]  T. Koornwinder Orthogonal polynomials in connection with quantum groups , 1990 .

[7]  Stephen Wolfram,et al.  The Mathematica Book , 1996 .

[8]  Francisco Marcellán,et al.  A distributional study of discrete classical orthogonal polynomials , 1995 .

[9]  V. B. Uvarov,et al.  Classical Orthogonal Polynomials of a Discrete Variable , 1991 .

[10]  W. A. Al-Salam Characterization Theorems for Orthogonal Polynomials , 1990 .

[11]  S. Bochner,et al.  Über Sturm-Liouvillesche Polynomsysteme , 1929 .

[12]  T. Chihara,et al.  An Introduction to Orthogonal Polynomials , 1979 .

[13]  Francisco Marcellán,et al.  Classical orthogonal polynomials: A functional approach , 1994 .

[14]  P. Lesky Über Polynomsysteme, die Sturm-Liouvilleschen Differenzengleichungen genügen , 1962 .

[15]  W. Hahn Über Orthogonalpolynome, die q-Differenzengleichungen genügen , 1949 .

[16]  Tom H. Koornwinder,et al.  Compact quantum groups and q-special functions , 1994 .

[17]  W. Hahn Über höhere Ableitungen von Orthogonalpolynomen , 1938 .

[18]  Francisco Marcellán Español,et al.  Q-classical orthogonal polynomials: a very classical approach , 1999 .

[19]  T. Chihara,et al.  Another Characterization of the Classical Orthogonal Polynomials , 1972 .

[20]  G. Andrews,et al.  Classical orthogonal polynomials , 1985 .

[21]  Sergei K. Suslov,et al.  Classical orthogonal polynomials of a discrete variable on nonuniform lattices , 1986 .

[22]  George E. Andrews,et al.  q-series : their development and application in analysis, number theory, combinatorics, physics, and computer algebra , 1986 .

[23]  Polynomial solutions of hypergeometric type difference equations and their classification , 1993 .

[24]  Rene F. Swarttouw,et al.  The Askey-scheme of hypergeometric orthogonal polynomials and its q-analogue Report Fac , 1996, math/9602214.