Long‐term Reliability Prediction of 935 nm LEDs Using Failure Laws and Low Acceleration Factor Ageing Tests

Numerous papers have already reported various results on electrical and optical performances of GaAs-based materials for optoelectronic applications. Other papers have proposed some methodologies for a classical estimation of reliability of GaAs compounds using life testing methods on a few thousand samples over 10 000 hours of testing. In contrast, fewer papers have studied the complete relation between degradation laws in relation to failure mechanisms and the estimation of lifetime distribution using accelerated ageing tests considering a short test duration, low acceleration factor and analytical extrapolation. In this paper, we report the results for commercial InGaAs/GaAs 935 nm packaged light emitting diodes (LEDs) using electrical and optical measurements versus ageing time. Cumulative failure distributions are calculated using degradation laws and process distribution data of optical power. A complete methodology is described proposing an accurate reliability model from experimental determination of the failure mechanisms (defect diffusion) for this technology. Electrical and optical characterizations are used with temperature dependence, short-duration accelerated tests (less than 1500 h) with an increase in bias current (up to 50%), a small number of samples (less than 20) and weak acceleration factors (up to 240). Copyright © 2005 John Wiley & Sons, Ltd.

[1]  Michael J. Adams,et al.  Carrier dependence of the spontaneous emission factor in DBR lasers , 2000 .

[2]  Isao Yoneda,et al.  Use of AuSn solder bumps in three-dimensional passive aligned packaging of LD/PD arrays on Si optical benches , 1996, 1996 Proceedings 46th Electronic Components and Technology Conference.

[3]  A. N. Gulluoglu,et al.  Dislocation generation in GaAs crystals grown by the vertical gradient freeze method , 2000 .

[4]  Mattia Borgarino,et al.  Degradation Based Long-Term Reliability Assessment for Electronic Components in Submarine Applications , 2002, Microelectron. Reliab..

[5]  M. Bettiati,et al.  High reliability level demonstrated on 980nm laser diode , 2003, Microelectron. Reliab..

[6]  Ilaria De Munari,et al.  Passive optical components: from degradation data to reliability assessment - preliminary results , 2002, Microelectron. Reliab..

[7]  Walter Hansch,et al.  Dopant diffusion during rapid thermal oxidation , 2000 .

[8]  Osamu Ueda,et al.  Reliability and degradation of III-V optical devices , 1996 .

[9]  Rolf-Peter Vollertsen,et al.  Thin dielectric reliability assessment for DRAM technology with deep trench storage node , 2003, Microelectron. Reliab..

[10]  M. R. Matthews,et al.  Optical components-the new challenge in packaging , 1990 .

[11]  S. M. Sze,et al.  Physics of semiconductor devices , 1969 .

[12]  Haruhiko Yoshida,et al.  Dopant-induced interface disorder in InGaAs/AlAsSb heterostructures lattice matched to InP grown by molecular beam epitaxy , 2001 .

[13]  Jean-Luc Goudard,et al.  Reliability of optoelectronic components for telecommunications , 2000 .

[14]  Jinn-Kong Sheu,et al.  ELECTRICAL DERIVATIVE CHARACTERISTICS OF ION-IMPLANTED AlGaInP/GaInP MULTI-QUANTUM WELL LASERS , 1998 .

[15]  R. Glang,et al.  Handbook of Thin Film Technology , 1970 .

[16]  Y. Gottesman,et al.  Detection and localization of degradation damaged regions in 1.3 μm laser diodes on InP using low-coherence reflectometry , 2001 .

[17]  D V Morgan,et al.  The reliability of (AlxGa1−x)0.5In0.5P visible light-emitting diodes , 2000 .

[18]  Antonio Martí,et al.  Determination of the origin of the series resistance through electroluminescence measurements of GaAs and AlxGa1−xAs solar cells and LEDs , 1998 .

[19]  Mitsuo Fukuda,et al.  Historical overview and future of optoelectronics reliability for optical fiber communication systems , 2000 .

[20]  R. J. Malik,et al.  III-V semiconductor materials and devices , 1989 .

[21]  Mattia Borgarino,et al.  Study of degradation mechanisms in compound semiconductor based devices by SEM-cathodoluminescence , 1998 .

[22]  J. Landesman,et al.  Micro-photoluminescence for the visualisation of defects, stress and temperature profiles in high-power III–V's devices , 2002 .

[23]  Istvan Reti,et al.  Spectral characteristics of InGaAsP/InP infrared emitting diodes grown by LPE , 2002 .

[24]  Y.C. Lee,et al.  Soldering technology for optoelectronic packaging , 1996, 1996 Proceedings 46th Electronic Components and Technology Conference.

[25]  Manijeh Razeghi,et al.  Recombination of carriers confined at In0.53Ga0.47As/InP and In0.75Ga0.25As0.5P0.5/InP interfaces , 1985 .

[26]  Osamu Ueda,et al.  Reliability issues in III–V compound semiconductor devices: optical devices and GaAs-based HBTs , 1999 .

[27]  O. Ueda,et al.  Degradation of III–V Opto‐Electronic Devices , 1988 .

[28]  S. B. Krupanidhi,et al.  Electrical transport characteristics of Au/n-GaAs Schottky diodes on n-Ge at low temperatures , 2001 .

[29]  S. Mridha,et al.  Flip chip interconnect using anisotropic conductive adhesive , 1999 .

[30]  G. Tränkle,et al.  Non-radiative current in InGaAs/AlGaAs laser diodes as a measure of facet stability , 1998 .

[31]  C. Gaebe,et al.  High performance optoelectronic packaging for 2.5 and 10 Gb/s laser modules , 1996, 1996 Proceedings 46th Electronic Components and Technology Conference.

[32]  Mitsuo Fukuda,et al.  Degradation behavior in InGaAs/GaAs strained-quantum well lasers , 1998 .

[33]  Laurent Bechou,et al.  Early failure signatures of 1310 nm laser modules using electrical, optical and spectral measurements , 2003 .

[34]  Noel Y. A. Shammas,et al.  Finite element simulation of thermal fatigue in multilayer structures: thermal and mechanical approach , 2001, Microelectron. Reliab..

[35]  Jean-Michel Dumas,et al.  Impact of 1.55 mum laser diode degradation laws on fibre optic system performances using a system simulator , 2003, Microelectron. Reliab..

[36]  Osamu Wada,et al.  Optoelectronic Integration: Physics, Technology and Applications , 1994 .

[37]  Genshiro Kitagawa,et al.  Asymptotic theory for information criteria in model selection—functional approach , 2003 .

[38]  W. B. Joyce,et al.  Electrical derivative characteristics of InGaAsP buried heterostructure lasers , 1982 .

[39]  Mitsuo Fukuda Optical semiconductor device reliability , 2002, Microelectron. Reliab..

[40]  X. Boddaert,et al.  New qualification approach for optoelectronic components , 2002, Microelectron. Reliab..

[41]  K. Ketata,et al.  A model for diffusion of beryllium in InGaAs/InP heterostructures , 2001 .

[42]  K. Streubel,et al.  Identification of aging mechanisms in the optical and electrical characteristics of light-emitting diodes , 2001 .

[43]  Y. Deshayes,et al.  Reliability estimation of BGA and CSP assemblies using degradation law model and technological parameters deviations , 2003, Microelectron. Reliab..

[44]  John F. Muth,et al.  Dominance of tunneling current and band filling in InGaN/AlGaN double heterostructure blue light‐emitting diodes , 1996 .