Stability and Control Investigations of Generic 53 Degree Swept Wing with Control Surfaces

A contribution for the assessment of the static and dynamic aerodynamic behavior of a generic unmanned combat air vehicle configuration with control devices using computational fluid dynamics methods is given. For the study, various computational approaches have been used to predict stability and control parameters for aircraft undergoing nonlinear flight conditions. For the computational fluid dynamics simulations, three different computational fluid dynamics solvers are used: the unstructured grid-based solvers DLR TAU code and USM3D from NASA, as well as the structured grid-based National Aerospace Laboratory/NLR solver ENSOLV. The numerical methods are verified by experimental wind-tunnel data. The correlations with experimental data are made for static longitudinal/lateral sweeps and at varying frequencies of prescribed roll/pitch/yaw sinusoidal motions for the vehicle operating with and without control surface deflections. Furthermore, the investigations should support the understanding of the flow physics around the trailing-edge control devices of highly swept configurations with a vortex-dominated flowfield. Design requirements should be drawn by analyzing the interaction between the vortical flow and the control devices. The present work is part of the North Atlantic Treaty Organization’s Science and Technology Organization/ Applied Vehicle Technology Task Group AVT-201 on stability and control prediction methods´.

[1]  T. Gerhold,et al.  Technical Documentation of the DLR T-Code , 1997 .

[2]  Olaf Brodersen,et al.  Advanced Turbulence Modelling and Stress Analysis for the DLR-F6 Configuration , 2005 .

[3]  Dan D. Vicroy,et al.  UCAV model design and static experimental investigations to estimate control device effectiveness and S&C capabilities , 2014 .

[4]  John E. Lamar,et al.  Overview of the Cranked-Arrow Wing Aerodynamics Project International , 2009 .

[5]  S. P. Spekreijse,et al.  ENFLOW a full-functionality system of CFD codes for industrial Euler/Navier-Stokes flow computations , 1996 .

[6]  H. Dol,et al.  Turbulence modelling for leading-edge vortex flows , 2002 .

[7]  O. J. Boelens,et al.  Comparison of Measured and Block Structured Simulation Results for the F-16XL Aircraft , 2009 .

[8]  O. J. Boelens,et al.  Prediction of the flow around the X-31 aircraft using three different CFD methods , 2012 .

[9]  Shahyar Pirzadeh,et al.  Advanced Unstructured Grid Generation for Complex Aerodynamics Applications , 2008 .

[10]  Jean-Claude Monnier,et al.  Stereoscopic Particle Image Velocimetry Flowfield Investigation of an Unmanned Combat Air Vehicle , 2012 .

[11]  T. Gerhold,et al.  Calculation of Complex Three-Dimensional Configurations Employing the DLR-tau-Code , 1997 .

[12]  Michel Visonneau,et al.  Assessment of Stability and Control Prediction Methods for NATO Air and Sea Vehicles. RTO-TR-AVT-161 , 2012 .

[13]  Patrick C. Murphy,et al.  System Identification Applied to Dynamic CFD Simulation and Wind Tunnel Data , 2011 .

[14]  Bambang I. Soemarwoto,et al.  X-LES Simulations Using a High-Order Finite-Volume Scheme , 2008 .

[15]  G. Redeker,et al.  A new vortex flow experiment for computer code validation , 2001 .

[16]  Ralf Heinrich,et al.  The DLR TAU-Code: Recent Applications in Research and Industry , 2006 .

[17]  Greg D. Power,et al.  A Flexible System for the Analysis of Bodies in Relative Motion , 2005 .

[18]  Neal T. Frink,et al.  Three Unstructured Computational Fluid Dynamics Studies on Generic Unmanned Combat Aerial Vehicle , 2012 .

[19]  Thomas Gerhold,et al.  Overview of the Hybrid RANS Code TAU , 2005 .

[20]  Rolf Radespiel,et al.  Differential Reynolds-Stress Modeling for Aeronautics , 2015 .

[21]  Russell M. Cummings,et al.  What Was Learned From the Numerical Simulations for the VFE-2 , 2008 .

[22]  Neal T. Frink,et al.  Enhancements to TetrUSS for NASA Constellation Program , 2012 .

[23]  Georgi Kalitzin,et al.  Turbulence modeling in an immersed-boundary RANS method , 2022 .

[24]  Stefan Görtz,et al.  Description of the F-16XL Geometry and Computational Grids Used in CAWAPI , 2007 .

[25]  Neal T. Frink,et al.  Tetrahedral Unstructured Navier-Stokes Method for Turbulent Flows , 1998 .

[26]  James M. Luckring,et al.  What was learned from the new VFE-2 experiments ☆ , 2013 .

[27]  Dietrich Hummel,et al.  Review of the Second International Vortex Flow Experiment (VFE-2) , 2008 .

[28]  Martin Rein,et al.  High speed static experimental investigations to estimatecontrol device effectiveness and S&C capabilities , 2014 .

[29]  J. Lumley,et al.  A new Reynolds stress algebraic equation model , 1994 .

[30]  Henry Dol,et al.  EXTRA-LARGE EDDY SIMULATION OF MASSIVELY SEPARATED FLOWS , 2004 .

[31]  S. Pirzadeh Advanced Unstructured Grid Generation for Complex Aerodynamic Applications , 2013 .

[32]  Andreas Schütte,et al.  Overview of Stability and Control Estimation Methods from NATO STO Task Group AVT-201 , 2013 .

[33]  Russell M. Cummings,et al.  The NATO STO Task Group AVT-201 on Extended Assessment of Stability and Control Prediction Methods for NATO Air Vehicles , 2014 .

[34]  Dan D. Vicroy,et al.  Static and Forced-Oscillation Tests of a Generic Unmanned Combat Air Vehicle , 2012 .

[35]  Neal Frink,et al.  Strategy for Dynamic CFD Simulations on SACCON Configuration , 2010 .

[36]  Andreas-René Hübner,et al.  Integrated Experimental and Numerical Research on the Aerodynamics of Unsteady Moving Aircraft , 2007 .

[37]  Stephan M. Hitzel,et al.  Flow Physics Analyses of a Generic Unmanned Combat Aerial Vehicle Configuration , 2012 .

[38]  Russell M. Cummings,et al.  Integrated Computational/Experimental Approach to Unmanned Combat Air Vehicle Stability and Control Estimation , 2012 .

[39]  Steve L. Karman,et al.  Reynolds-Averaged Navier-Stokes Solutions for the CAWAPI F-16XL Using Different Hybrid Grids , 2009 .

[40]  S. Girimaji Fully explicit and self-consistent algebraic Reynolds stress model , 1995 .

[41]  Stefan Görtz,et al.  Standard Unstructured Grid Solutions for Cranked Arrow Wing Aerodynamics Project International F-16XL , 2009 .

[42]  Heinrich Lüdeke,et al.  Numerical investigations on the VFE-2 65-degree rounded leading edge delta wing using the unstructured DLR TAU-Code , 2013 .

[43]  O. J. Boelens CFD Analysis of the Flow Around the X-31 Aircraft at High Angle of Attack , 2009 .

[44]  J. C. Kok,et al.  Resolving the dependence on free-stream values for the k-omega turbulence model , 1999 .

[45]  Kerstin Claudie Huber,et al.  Conceptual Design and Aerodynamic Analyses of a Generic UCAV Configuration , 2014 .

[46]  Dan D. Vicroy,et al.  Low-speed Dynamic Wind Tunnel Test Analysis of a Generic 53° Swept UCAV Configuration , 2014 .

[47]  Henry Dol,et al.  Leading edge vortex flow computations and comparison with DNW-HST wind tunnel data , 2001 .