Rational interpolation to solutions of Riccati difference equations on elliptic lattices

It is shown how to define difference equations on particular lattices {x"n}, [email protected]?Z, where the x"ns are values of an elliptic function at a sequence of arguments in arithmetic progression (elliptic lattice). Solutions to special difference equations (elliptic Riccati equations) have remarkable simple (!) interpolatory continued fraction expansions.

[1]  Sergei K. Suslov,et al.  Classical orthogonal polynomials of a discrete variable on nonuniform lattices , 1986 .

[2]  G. Andrews,et al.  Classical orthogonal polynomials , 1985 .

[3]  L. M. Milne-Thomson,et al.  The Calculus Of Finite Differences , 1934 .

[4]  V. P. Spiridonov,et al.  Theta hypergeometric integrals , 2003, math/0303205.

[5]  A. Zhedanov,et al.  The Dirichlet and the Poncelet problems , 2005 .

[6]  Вячеслав Павлович Спиридонов,et al.  Очерки теории эллиптических гипергеометрических функций@@@Essays on the theory of elliptic hypergeometric functions , 2008 .

[7]  Francisco Marcellán Español,et al.  Q-classical orthogonal polynomials: a very classical approach , 1999 .

[8]  E. Laguerre,et al.  Sur la réduction en fractions continues d'une fraction qui satisfait à une équation différentielle linéaire du premier ordre dont les coefficients sont rationnels , 1885 .

[9]  Tom H. Koornwinder,et al.  q-Special functions, a tutorial , 1994, math/9403216.

[10]  Mourad E. H. Ismail,et al.  Generalized orthogonality and continued fractions , 1994 .

[11]  Tom H. Koornwinder,et al.  Compact quantum groups and q-special functions , 1994 .

[12]  M. Hazewinkel Encyclopaedia of mathematics , 1987 .

[13]  Alexei Zhedanov Regular Article: Biorthogonal Rational Functions and the Generalized Eigenvalue Problem , 1999 .

[14]  V. Spiridonov Elliptic Hypergeometric Functions , 2007, Lectures on Orthogonal Polynomials and Special Functions.

[15]  W. J. Thron,et al.  Encyclopedia of Mathematics and its Applications. , 1982 .

[16]  S. Tsujimoto,et al.  Integrable discrete time chains for the Frobenius-Stickelberger-Thiele polynomials , 2007 .

[17]  A. Zhedanov,et al.  Generalized Eigenvalue Problem and a New Family of Rational Functions Biorthogonal on Elliptic Grids , 2001 .

[18]  Rene F. Swarttouw,et al.  The Askey-scheme of hypergeometric orthogonal polynomials and its q-analogue Report Fac , 1996, math/9602214.

[19]  Christine Swart,et al.  Recurrence Relations for Elliptic Sequences: Every Somos 4 is a Somos k , 2004, math/0412293.

[20]  Dirichlet and Neumann Problems for String Equation, Poncelet Problem and Pell-Abel Equation , 2006, math/0604278.

[21]  A. Magnus Riccati Acceleration of Jacobi Continued Fractions and Laguerre-hahn Orthogonal Polynomials , 1984 .

[22]  Ap. Magnus,et al.  Associated Askey-Wilson polynomials as Laguerre-Hahn orthogonal polynomials , 1988 .

[23]  A. Zhedanov,et al.  Elliptic grids, rational functions, and the Padé interpolation , 2007 .

[24]  S. Boukraa,et al.  Modular invariance in lattice statistical mechanics , 2001 .

[25]  T. Chihara,et al.  An Introduction to Orthogonal Polynomials , 1979 .

[26]  V. B. Uvarov,et al.  Classical Orthogonal Polynomials of a Discrete Variable , 1991 .

[27]  V. Spiridonov Elliptic hypergeometric functions and Calogero-Sutherland-type models , 2007 .

[28]  Alphonse P. Magnus Special nonuniform lattice ( snul ) orthogonal polynomials on discrete dense sets of points , 1995 .

[29]  A. Zhedanov Padé interpolation table and biorthogonal rational functions , 2005 .

[30]  R. Askey,et al.  Some basic hypergeometric orthogonal polynomials that generalize Jacobi polynomials , 1985 .