A stable porous anionic metal-organic framework for luminescence sensing of ln(3+) ions and detection of nitrobenzene.

A hexagonal channel-based porous anionic metal-organic framework was successfully constructed. IFMC-3 is stable in air and acidic/basic aqueous solutions at room temperature, and constitutes a selective luminescent sensing material for Ln(3+) ions and a recyclable probe for the sensitive detection of nitrobenzene.

[1]  Zhong Sun,et al.  An unprecedented (3,4,24)-connected heteropolyoxozincate organic framework as heterogeneous crystalline Lewis acid catalyst for biodiesel production , 2013, Scientific Reports.

[2]  Dawei Feng,et al.  An exceptionally stable, porphyrinic Zr metal-organic framework exhibiting pH-dependent fluorescence. , 2013, Journal of the American Chemical Society.

[3]  X. Bu,et al.  A luminescent 2D coordination polymer for selective sensing of nitrobenzene. , 2013, Dalton transactions.

[4]  Z. Su,et al.  Self-assembly versus stepwise synthesis: heterometal-organic frameworks based on metalloligands with tunable luminescence properties. , 2013, Chemistry.

[5]  Ze Chang,et al.  A Cu(I) metal–organic framework with 4-fold helical channels for sensing anions , 2013 .

[6]  S. Sedlmaier,et al.  Metal-organic framework luminescence in the yellow gap by codoping of the homoleptic imidazolate ∞(3)[Ba(Im)2] with divalent europium. , 2013, Journal of the American Chemical Society.

[7]  J. Liao,et al.  Characterization, adsorption properties, metal ion-exchange and crystal-to-crystal transformation of Cd3[(Cd4Cl)3(BTT)8(H2O)12]2 framework, where BTT3− = 1,3,5-benzenetristetrazolate , 2013 .

[8]  Z. Su,et al.  Solvatochromic behavior of chiral mesoporous metal-organic frameworks and their applications for sensing small molecules and separating cationic dyes. , 2013, Chemistry.

[9]  Mingyan Wu,et al.  A multi-metal-cluster MOF with Cu4I4 and Cu6S6 as functional groups exhibiting dual emission with both thermochromic and near-IR character , 2013 .

[10]  Jun-Hao Wang,et al.  A dynamic, luminescent and entangled MOF as a qualitative sensor for volatile organic solvents and a quantitative monitor for acetonitrile vapour , 2013 .

[11]  Jing Li,et al.  MOFs for CO2 capture and separation from flue gas mixtures: the effect of multifunctional sites on their adsorption capacity and selectivity. , 2013, Chemical communications.

[12]  X. You,et al.  Fine-tuning pore size by shifting coordination sites of ligands and surface polarization of metal-organic frameworks to sharply enhance the selectivity for CO2. , 2013, Journal of the American Chemical Society.

[13]  P. Cui,et al.  Multipoint interactions enhanced CO2 uptake: a zeolite-like zinc-tetrazole framework with 24-nuclear zinc cages. , 2012, Journal of the American Chemical Society.

[14]  Rui‐Biao Lin,et al.  Strong and dynamic CO2 sorption in a flexible porous framework possessing guest chelating claws. , 2012, Journal of the American Chemical Society.

[15]  Jihong Yu,et al.  Structures and properties of lanthanide metal-organic frameworks based on a 1,2,3-triazole-containing tetracarboxylate ligand. , 2012, Dalton transactions.

[16]  Z. Su,et al.  Functional heterometallic coordination polymers with metalloligands as tunable luminescent crystalline materials , 2012 .

[17]  Yang-guang Li,et al.  An ionothermal synthetic approach to porous polyoxometalate-based metal-organic frameworks. , 2012, Angewandte Chemie.

[18]  Zhong‐Ming Sun,et al.  Solvents control over the degree of interpenetration in metal-organic frameworks and their high sensitivities for detecting nitrobenzene at ppm level , 2012 .

[19]  Jingping Zhang,et al.  N-rich zeolite-like metal–organic framework with sodalite topology: high CO2 uptake, selective gas adsorption and efficient drug delivery , 2012 .

[20]  Fei Wang,et al.  Charge matching on designing neutral cadmium-lanthanide-organic open frameworks for luminescence sensing. , 2012, Chemistry, an Asian journal.

[21]  Jian-Han Zhang,et al.  Tunable emission based on lanthanide(III) metal-organic frameworks: an alternative approach to white light , 2012 .

[22]  Zhiyong Guo,et al.  A luminescent mixed-lanthanide metal-organic framework thermometer. , 2012, Journal of the American Chemical Society.

[23]  Mark A. Rodriguez,et al.  Intrinsic broad-band white-light emission by a tuned, corrugated metal-organic framework. , 2012, Journal of the American Chemical Society.

[24]  Yanfeng Yue,et al.  Luminescent functional metal-organic frameworks. , 2012, Chemical reviews.

[25]  P. Mukherjee,et al.  Fluorescent metal-organic framework for selective sensing of nitroaromatic explosives. , 2011, Chemical communications.

[26]  J. Marrot,et al.  Polyoxometalate-based metal organic frameworks (POMOFs): structural trends, energetics, and high electrocatalytic efficiency for hydrogen evolution reaction. , 2011, Journal of the American Chemical Society.

[27]  J. Long,et al.  High thermal and chemical stability in pyrazolate-bridged metal–organic frameworks with exposed metal sites , 2011 .

[28]  Sung Min Shin,et al.  Asymmetric catalytic reactions by NbO-type chiral metal–organic frameworks , 2011 .

[29]  H. Okamoto,et al.  Bottom-up realization of a porous metal-organic nanotubular assembly. , 2011, Nature materials.

[30]  C. Zheng,et al.  New microporous metal-organic framework demonstrating unique selectivity for detection of high explosives and aromatic compounds. , 2011, Journal of the American Chemical Society.

[31]  Yuanjing Cui,et al.  A luminescent nanoscale metal-organic framework for sensing of nitroaromatic explosives. , 2011, Chemical communications.

[32]  Yang-guang Li,et al.  An unprecedented 3D 8-connected pure inorganic framework based on nanosized {[Na12PO16H24]⊂[P4Mo6O31H6]4}15- clusters and zinc cations. , 2011, Chemical communications.

[33]  Xiuyun Sun,et al.  Syntheses, structures and luminescent properties of a series of 3D lanthanide coordination polymers with tripodal semirigid ligand , 2011 .

[34]  S. Petoud,et al.  Zinc-adeninate metal-organic framework for aqueous encapsulation and sensitization of near-infrared and visible emitting lanthanide cations. , 2011, Journal of the American Chemical Society.

[35]  Ronald A. Smaldone,et al.  Metal-organic frameworks from edible natural products. , 2010, Angewandte Chemie.

[36]  G. Qian,et al.  A rod packing microporous metal-organic framework with open metal sites for selective guest sorption and sensing of nitrobenzene. , 2010, Chemical communications.

[37]  Randall Q. Snurr,et al.  Ultrahigh Porosity in Metal-Organic Frameworks , 2010, Science.

[38]  Qiang Xu,et al.  Non-, micro-, and mesoporous metal-organic framework isomers: reversible transformation, fluorescence sensing, and large molecule separation. , 2010, Journal of the American Chemical Society.

[39]  Kristina Gedrich,et al.  Eine mesoporöse Metall‐organische Gerüstverbindung , 2009 .

[40]  U. Mueller,et al.  A mesoporous metal-organic framework. , 2009, Angewandte Chemie.

[41]  Nathaniel L Rosi,et al.  Near-infrared luminescent lanthanide MOF barcodes. , 2009, Journal of the American Chemical Society.

[42]  David Farrusseng,et al.  Metall‐organische Gerüste für die Katalyse , 2009 .

[43]  C. Pinel,et al.  Metal-organic frameworks: opportunities for catalysis. , 2009, Angewandte Chemie.

[44]  A. Corma,et al.  A miniaturized linear pH sensor based on a highly photoluminescent self-assembled europium(III) metal-organic framework. , 2009, Angewandte Chemie.

[45]  Demetra A. Chengelis,et al.  Near-infrared emitting ytterbium metal-organic frameworks with tunable excitation properties. , 2009, Chemical communications.

[46]  Dong Guo,et al.  A color-tunable europium complex emitting three primary colors and white light. , 2009, Angewandte Chemie.

[47]  Dan Zhao,et al.  Stabilization of metal-organic frameworks with high surface areas by the incorporation of mesocavities with microwindows. , 2009, Journal of the American Chemical Society.

[48]  Hong‐Cai Zhou,et al.  Selective gas adsorption and separation in metal-organic frameworks. , 2009, Chemical Society reviews.

[49]  D. Olson,et al.  A luminescent microporous metal-organic framework for the fast and reversible detection of high explosives. , 2009, Angewandte Chemie.

[50]  L. Carlos,et al.  Photoluminescent microporous lanthanide silicate AV-21 frameworks. , 2008, Chemistry.

[51]  Michael O'Keeffe,et al.  Designed Synthesis of 3D Covalent Organic Frameworks , 2007, Science.

[52]  Yan‐Qiong Sun,et al.  Porous lanthanide-organic open frameworks with helical tubes constructed from interweaving triple-helical and double-helical chains. , 2005, Angewandte Chemie.

[53]  Anthony L. Spek,et al.  Journal of , 1993 .

[54]  A. Cheetham,et al.  Anorganische Materialien mit offenen Gerüsten , 1999 .

[55]  Cheetham,et al.  Open-Framework Inorganic Materials. , 1999, Angewandte Chemie.

[56]  Xiang-Jun Zheng,et al.  Luminescence tuning and white-light emission of co-doped Ln-Cd-organic frameworks. , 2013, Chemistry, an Asian journal.