The spherical search algorithm for bound-constrained global optimization problems

Abstract In this paper, a new optimization algorithm called Spherical Search (SS) is proposed to solve the bound-constrained non-linear global optimization problems. The main operations of SS are the calculation of spherical boundary and generation of new trial solution on the surface of the spherical boundary. These operations are mathematically modeled with some more basic level operators: Initialization of solution, greedy selection and parameter adaptation, and are employed on the 30 black-box bound constrained global optimization problems. This study also analyzes the applicability of the proposed algorithm on a set of real-life optimization problems. Meanwhile, to show the robustness and proficiency of SS, the obtained results of the proposed algorithm are compared with the results of other well-known optimization algorithms and their advanced variants: Particle Swarm Optimization (PSO), Differential Evolution (DE), and Covariance Matrix Adapted Evolution Strategy (CMA-ES). The comparative analysis reveals that the performance of SS is quite competitive with respect to the other peer algorithms.

[1]  Jun Zhang,et al.  Orthogonal Learning Particle Swarm Optimization , 2011, IEEE Trans. Evol. Comput..

[2]  James Kennedy,et al.  Bare bones particle swarms , 2003, Proceedings of the 2003 IEEE Swarm Intelligence Symposium. SIS'03 (Cat. No.03EX706).

[3]  Alex S. Fukunaga,et al.  Success-history based parameter adaptation for Differential Evolution , 2013, 2013 IEEE Congress on Evolutionary Computation.

[4]  Ayhan Nuhoglu,et al.  Interactive search algorithm: A new hybrid metaheuristic optimization algorithm , 2018, Eng. Appl. Artif. Intell..

[5]  Andrew Lewis,et al.  Grasshopper Optimisation Algorithm: Theory and application , 2017, Adv. Eng. Softw..

[6]  Seyed Mohammad Mirjalili,et al.  Multi-Verse Optimizer: a nature-inspired algorithm for global optimization , 2015, Neural Computing and Applications.

[7]  Ruhul A. Sarker,et al.  GA with a new multi-parent crossover for solving IEEE-CEC2011 competition problems , 2011, 2011 IEEE Congress of Evolutionary Computation (CEC).

[8]  Vijander Singh,et al.  A novel nature-inspired algorithm for optimization: Squirrel search algorithm , 2019, Swarm Evol. Comput..

[9]  Xin-She Yang,et al.  A New Metaheuristic Bat-Inspired Algorithm , 2010, NICSO.

[10]  John R. Koza,et al.  Genetic programming - on the programming of computers by means of natural selection , 1993, Complex adaptive systems.

[11]  Sam Kwong,et al.  Genetic algorithms and their applications , 1996, IEEE Signal Process. Mag..

[12]  Dervis Karaboga,et al.  A powerful and efficient algorithm for numerical function optimization: artificial bee colony (ABC) algorithm , 2007, J. Glob. Optim..

[13]  Lawrence J. Fogel,et al.  Artificial Intelligence through Simulated Evolution , 1966 .

[14]  Yuhui Shi,et al.  Hybrid Sampling Evolution Strategy for Solving Single Objective Bound Constrained Problems , 2018, 2018 IEEE Congress on Evolutionary Computation (CEC).

[15]  Hui Zhao,et al.  A novel nature-inspired algorithm for optimization: Virus colony search , 2016, Adv. Eng. Softw..

[16]  Devender Singh,et al.  Improving the local search capability of Effective Butterfly Optimizer using Covariance Matrix Adapted Retreat Phase , 2017, 2017 IEEE Congress on Evolutionary Computation (CEC).

[17]  Ingo Rechenberg,et al.  Evolution Strategy: Nature’s Way of Optimization , 1989 .

[18]  Gaurav Dhiman,et al.  Spotted hyena optimizer: A novel bio-inspired based metaheuristic technique for engineering applications , 2017, Adv. Eng. Softw..

[19]  Erik Cuevas,et al.  The Selfish Herd Optimizer , 2020 .

[20]  Seyedali Mirjalili,et al.  SCA: A Sine Cosine Algorithm for solving optimization problems , 2016, Knowl. Based Syst..

[21]  Ilya Loshchilov,et al.  CMA-ES with restarts for solving CEC 2013 benchmark problems , 2013, 2013 IEEE Congress on Evolutionary Computation.

[22]  Nikolaus Hansen,et al.  The CMA Evolution Strategy: A Comparing Review , 2006, Towards a New Evolutionary Computation.

[23]  Marco Locatelli,et al.  A Note on the Griewank Test Function , 2003, J. Glob. Optim..

[24]  Devender Singh,et al.  Testing A Multi-Operator based Differential Evolution Algorithm on the 100-Digit Challenge for Single Objective Numerical Optimization , 2019, 2019 IEEE Congress on Evolutionary Computation (CEC).

[25]  JinFu Feng,et al.  Covariance and crossover matrix guided differential evolution for global numerical optimization , 2016, SpringerPlus.

[26]  Vijay Kumar,et al.  Emperor penguin optimizer: A bio-inspired algorithm for engineering problems , 2018, Knowl. Based Syst..

[27]  Marco Dorigo Ant colony optimization , 2004, Scholarpedia.

[28]  Anne Auger,et al.  LS-CMA-ES: A Second-Order Algorithm for Covariance Matrix Adaptation , 2004, PPSN.

[29]  Seyed Mohammad Mirjalili,et al.  The Ant Lion Optimizer , 2015, Adv. Eng. Softw..

[30]  Xin-She Yang,et al.  Bio-inspired computation: Where we stand and what's next , 2019, Swarm Evol. Comput..

[31]  Andrew Lewis,et al.  Grey Wolf Optimizer , 2014, Adv. Eng. Softw..

[32]  Zhigang Shang,et al.  Differential Evolution strategy based on the constraint of fitness values classification , 2014, 2014 IEEE Congress on Evolutionary Computation (CEC).

[33]  K. Mahadevan,et al.  Comprehensive learning particle swarm optimization for reactive power dispatch , 2010, Appl. Soft Comput..

[34]  Alex S. Fukunaga,et al.  Improving the search performance of SHADE using linear population size reduction , 2014, 2014 IEEE Congress on Evolutionary Computation (CEC).

[35]  Rainer Storn,et al.  Differential Evolution – A Simple and Efficient Heuristic for global Optimization over Continuous Spaces , 1997, J. Glob. Optim..

[36]  Zhongyi Hu,et al.  Partial opposition-based adaptive differential evolution algorithms: Evaluation on the CEC 2014 benchmark set for real-parameter optimization , 2014, 2014 IEEE Congress on Evolutionary Computation (CEC).

[37]  Xin Yao,et al.  Evolutionary programming made faster , 1999, IEEE Trans. Evol. Comput..

[38]  Dirk V. Arnold,et al.  Improving Evolution Strategies through Active Covariance Matrix Adaptation , 2006, 2006 IEEE International Conference on Evolutionary Computation.

[39]  Leandro dos Santos Coelho,et al.  Coyote Optimization Algorithm: A New Metaheuristic for Global Optimization Problems , 2018, 2018 IEEE Congress on Evolutionary Computation (CEC).

[40]  Hossam Faris,et al.  Salp Swarm Algorithm: A bio-inspired optimizer for engineering design problems , 2017, Adv. Eng. Softw..

[41]  Riccardo Poli,et al.  Particle swarm optimization , 1995, Swarm Intelligence.

[42]  Hojjat Rakhshani,et al.  Snap-drift cuckoo search: A novel cuckoo search optimization algorithm , 2017, Appl. Soft Comput..

[43]  Ponnuthurai Nagaratnam Suganthan,et al.  Problem Definitions and Evaluation Criteria for the CEC 2014 Special Session and Competition on Single Objective Real-Parameter Numerical Optimization , 2014 .

[44]  Han Huang,et al.  A Differential Evolution with Replacement Strategy for Real-Parameter Numerical Optimization , 2014, 2014 IEEE Congress on Evolutionary Computation (CEC).

[45]  Nikolaus Hansen,et al.  A restart CMA evolution strategy with increasing population size , 2005, 2005 IEEE Congress on Evolutionary Computation.

[46]  Jun Zhang,et al.  Adaptive Particle Swarm Optimization , 2008, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics).

[47]  David H. Wolpert,et al.  No free lunch theorems for optimization , 1997, IEEE Trans. Evol. Comput..

[48]  Christian Igel,et al.  A computational efficient covariance matrix update and a (1+1)-CMA for evolution strategies , 2006, GECCO.

[49]  Thomas Stützle,et al.  Benchmark results for a simple hybrid algorithm on the CEC 2013 benchmark set for real-parameter optimization , 2013, 2013 IEEE Congress on Evolutionary Computation.

[50]  Saeed Balochian,et al.  Social mimic optimization algorithm and engineering applications , 2019, Expert Syst. Appl..

[51]  Vijay Kumar,et al.  Seagull optimization algorithm: Theory and its applications for large-scale industrial engineering problems , 2019, Knowl. Based Syst..

[52]  Robert G. Reynolds,et al.  An ensemble sinusoidal parameter adaptation incorporated with L-SHADE for solving CEC2014 benchmark problems , 2016, 2016 IEEE Congress on Evolutionary Computation (CEC).

[53]  Andrew Lewis,et al.  The Whale Optimization Algorithm , 2016, Adv. Eng. Softw..

[54]  Fariborz Jolai,et al.  Lion Optimization Algorithm (LOA): A nature-inspired metaheuristic algorithm , 2016, J. Comput. Des. Eng..

[55]  A. Kaveh,et al.  A novel meta-heuristic optimization algorithm: Thermal exchange optimization , 2017, Adv. Eng. Softw..