On the Width of Semi-Algebraic Proofs and Algorithms

In this paper we initiate the study of width in semi-algebraic proof systems and various cut-based procedures in integer programming. We focus on two important systems: Gomory-Chvatal cutting planes and Lovasz-Schrijver lift-and-project procedures. We develop general methods for proving width lower bounds and apply them to random k-CNFs and several popular combinatorial principles like the perfect matching principle and Tseitin tautologies. We also show how to apply our methods to various combinatorial optimization problems. We establish an “ultimate” trade-off between width and rank, that is give an example in which small width proofs are possible but require exponentially many rounds to perform them.

[1]  Madhur Tulsiani CSP gaps and reductions in the lasserre hierarchy , 2009, STOC '09.

[2]  Madhur Tulsiani,et al.  Tight integrality gaps for Lovasz-Schrijver LP relaxations of vertex cover and max cut , 2007, STOC '07.

[3]  N. Wormald,et al.  Models of the , 2010 .

[4]  Alexander Schrijver,et al.  Cones of Matrices and Set-Functions and 0-1 Optimization , 1991, SIAM J. Optim..

[5]  Michael Alekhnovich,et al.  Pseudorandom generators in propositional proof complexity , 2000, Proceedings 41st Annual Symposium on Foundations of Computer Science.

[6]  Jean B. Lasserre,et al.  Global Optimization with Polynomials and the Problem of Moments , 2000, SIAM J. Optim..

[7]  Robert B. Ash,et al.  Information Theory , 2020, The SAGE International Encyclopedia of Mass Media and Society.

[8]  Eli Ben-Sasson,et al.  Short proofs are narrow—resolution made simple , 2001, JACM.

[9]  Sanjeeb Dash,et al.  Exponential Lower Bounds on the Lengths of Some Classes of Branch-and-Cut Proofs , 2005, Math. Oper. Res..

[10]  Ralph E. Gomory,et al.  Outline of an Algorithm for Integer Solutions to Linear Programs and An Algorithm for the Mixed Integer Problem , 2010, 50 Years of Integer Programming.

[11]  David Steurer,et al.  Sum-of-squares proofs and the quest toward optimal algorithms , 2014, Electron. Colloquium Comput. Complex..

[12]  W. Hoeffding Probability Inequalities for sums of Bounded Random Variables , 1963 .

[13]  Alan M. Frieze,et al.  Random graphs , 2006, SODA '06.

[14]  Friedrich Eisenbrand,et al.  Bounds on the Chvátal Rank of Polytopes in the 0/1-Cube* , 2003, Comb..

[15]  Sanjeeb Dash,et al.  An Exponential Lower Bound on the Length of Some Classes of Branch-and-Cut Proofs , 2002, IPCO.

[16]  Madhur Tulsiani,et al.  A Linear Round Lower Bound for Lovasz-Schrijver SDP Relaxations of Vertex Cover , 2007, Twenty-Second Annual IEEE Conference on Computational Complexity (CCC'07).

[17]  Pavel Pudlák,et al.  Lower bounds for resolution and cutting plane proofs and monotone computations , 1997, Journal of Symbolic Logic.

[18]  William J. Cook,et al.  On the complexity of cutting-plane proofs , 1987, Discret. Appl. Math..

[19]  Béla Bollobás,et al.  A Probabilistic Proof of an Asymptotic Formula for the Number of Labelled Regular Graphs , 1980, Eur. J. Comb..

[20]  Jakob Nordstr PEBBLE GAMES, PROOF COMPLEXITY, AND TIME-SPACE TRADE-OFFS ∗ , 2013 .

[21]  Grant Schoenebeck,et al.  Linear Level Lasserre Lower Bounds for Certain k-CSPs , 2008, 2008 49th Annual IEEE Symposium on Foundations of Computer Science.

[22]  M. Paterson,et al.  Boolean Function Complexity , 1992 .

[23]  Friedrich Eisenbrand,et al.  Bounds on the Chvátal Rank of Polytopes in the 0/1-Cube , 1999, IPCO.

[24]  P. Pudlák Sets and Proofs: On the Complexity of the Propositional Calculus , 1999 .

[25]  M. Pinsker,et al.  On the complexity of a concentrator , 1973 .

[26]  Alexander Schrijver,et al.  On Cutting Planes , 1980 .

[27]  N. Wormald Models of random regular graphs , 2010 .

[28]  Jack Edmonds,et al.  Maximum matching and a polyhedron with 0,1-vertices , 1965 .

[29]  Samuel R. Buss,et al.  Linear gaps between degrees for the polynomial calculus modulo distinct primes , 1999, Proceedings. Fourteenth Annual IEEE Conference on Computational Complexity (Formerly: Structure in Complexity Theory Conference) (Cat.No.99CB36317).

[30]  Marco Molinaro,et al.  Approximating polyhedra with sparse inequalities , 2015, Math. Program..

[31]  Alexander A. Razborov,et al.  A New Kind of Tradeoffs in Propositional Proof Complexity , 2016, J. ACM.

[32]  Sanjeev Arora,et al.  Towards Strong Nonapproximability Results in the Lovász-Schrijver Hierarchy , 2005, STOC '05.

[33]  Dima Grigoriev,et al.  Complexity of Semi-algebraic Proofs , 2002, STACS.

[34]  Vasek Chvátal,et al.  Edmonds polytopes and a hierarchy of combinatorial problems , 1973, Discret. Math..

[35]  Prasad Raghavendra,et al.  Lower Bounds on the Size of Semidefinite Programming Relaxations , 2014, STOC.

[36]  Béla Bollobás,et al.  The Isoperimetric Number of Random Regular Graphs , 1988, Eur. J. Comb..

[37]  Michel X. Goemans,et al.  When Does the Positive Semidefiniteness Constraint Help in Lifting Procedures? , 2001, Math. Oper. Res..

[38]  Stasys Jukna,et al.  Boolean Function Complexity Advances and Frontiers , 2012, Bull. EATCS.

[39]  Endre Szemerédi,et al.  Many hard examples for resolution , 1988, JACM.

[40]  Russell Impagliazzo,et al.  Upper and lower bounds for tree-like cutting planes proofs , 1994, Proceedings Ninth Annual IEEE Symposium on Logic in Computer Science.

[41]  Michael Alekhnovich,et al.  Towards strong nonapproximability results in the Lovasz-Schrijver hierarchy , 2005, STOC.

[42]  Claire Mathieu,et al.  Sherali-adams relaxations of the matching polytope , 2009, STOC '09.

[43]  Béla Bollobás,et al.  Random Graphs , 1985 .

[44]  Dmitrii V. Pasechnik,et al.  Complexity of semialgebraic proofs , 2002 .

[45]  Michael Alekhnovich,et al.  Lower bounds for polynomial calculus: non-binomial case , 2001, Proceedings 2001 IEEE International Conference on Cluster Computing.