Polybenzimidazole-membrane-based PEM fuel cell in the temperature range of 120–200 °C

Abstract Phosphoric acid-doped polybenzimidazole-membrane-based PEM fuel cells were tested in the temperature range of 120–200 °C, with ambient backpressure and 0% RH. AC impedance spectroscopy, surface cyclic voltammetry and fuel cell performance simulation were used to obtain the exchange current densities for the cathodic oxygen reduction reaction (ORR) and anodic hydrogen oxidation reaction (HOR) on platinum-based catalysts at such high temperatures. The activation energies for ORR, HOR and membrane conductivity were also obtained separately. The results showed that temperature significantly affects the charger transfer and gas (O 2 and H 2 ) diffusion resistances. The effect of O 2 stoichiometry (ST air ) on fuel cell performance was also investigated. Increasing ST air can effectively increase the O 2 partial pressure in the feed air, leading to improvements in both the thermodynamics and the kinetics of the fuel cell reactions. In addition, it was observed that increasing ST air could also improve the gas diffusion processes.

[1]  David P. Wilkinson,et al.  High temperature PEM fuel cells , 2006 .

[2]  D. Wilkinson,et al.  Degradation of polymer electrolyte membranes , 2006 .

[3]  Jing Li,et al.  PEM fuel cell reaction kinetics in the temperature range of 23–120 °C , 2007 .

[4]  R. Savinell,et al.  High-temperature polymer electrolytes for PEM fuel cells: study of the oxygen reduction reaction (ORR) at a Pt–polymer electrolyte interface , 2004 .

[5]  K. Kreuer,et al.  Toward a new type of anhydrous organic proton conductor based on immobilized imidazole , 2004 .

[6]  Jing Li,et al.  Temperature Dependent Performance and In Situ AC Impedance of High-Temperature PEM Fuel Cells Using the Nafion-112 Membrane , 2006 .

[7]  Andrey G. Cherstvy,et al.  The effect of water content on proton transport in polymer electrolyte membranes , 2002 .

[8]  Ronghuan He,et al.  Physicochemical properties of phosphoric acid doped polybenzimidazole membranes for fuel cells , 2006 .

[9]  Xuan Cheng,et al.  Hydrogen crossover in high-temperature PEM fuel cells , 2007 .

[10]  Paola Costamagna,et al.  Nafion® 115/zirconium phosphate composite membranes for operation of PEMFCs above 100 °C , 2002 .

[11]  Norman Munroe,et al.  Mathematical model of a PEMFC using a PBI membrane , 2006 .

[12]  Zhigang Shao,et al.  The stability of Pt/C catalyst in H3PO4/PBI PEMFC during high temperature life test , 2007 .

[13]  R. Bouchet,et al.  Proton conduction in acid doped polybenzimidazole , 1999 .

[14]  Shimshon Gottesfeld,et al.  Electro‐osmotic Drag of Water in Ionomeric Membranes New Measurements Employing a Direct Methanol Fuel Cell , 1997 .

[15]  Zhenyu Liu,et al.  Study of the oxygen reduction reaction (ORR) at Pt interfaced with phosphoric acid doped polybenzimidazole at elevated temperature and low relative humidity , 2006 .

[16]  Chang-Soo Kim,et al.  Performance of a poly(2,5-benzimidazole) membrane based high temperature PEM fuel cell in the presence of carbon monoxide , 2006 .

[17]  T. Kyu,et al.  Dynamic Mechanical Studies of Partially Ionized and Neutralized Nafion Polymers , 1983 .

[18]  Jingwei Hu,et al.  Degradation study on MEA in H3PO4/PBI high-temperature PEMFC life test , 2007 .

[19]  Ravindra Datta,et al.  Performance analysis and impedance spectral signatures of high temperature PBI–phosphoric acid gel membrane fuel cells , 2006 .

[20]  P. Cañizares,et al.  PBI-based polymer electrolyte membranes fuel cells: Temperature effects on cell performance and catalyst stability , 2007 .

[21]  Jung-Ki Park,et al.  A coated Nafion membrane with a PVdF copolymer/Nafion blend for direct methanol fuel cells (DMFCs) , 2005 .

[22]  S. Hsu,et al.  Synthesis and properties of a new fluorine‐containing polybenzimidazole for high‐temperature fuel‐cell applications , 2006 .

[23]  Søren Knudsen Kær,et al.  Experimental characterization and modeling of commercial polybenzimidazole-based MEA performance , 2006 .

[24]  Jesse S. Wainright,et al.  A H2O2 fuel cell using acid doped polybenzimidazole as polymer electrolyte , 1996 .

[25]  T. Lim,et al.  PBI Derivatives: Polymer Electrolyte Fuel Cell Membrane for High Temperature Operation , 2004 .

[26]  P. Cañizares,et al.  Synthesis and characterisation of poly[2,2-(m-phenylene)-5,5-bibenzimidazole] as polymer electrolyte membrane for high temperature PEMFCs , 2006 .

[27]  Torsten Berning,et al.  Improving the performance of high-temperature PEM fuel cells based on PBI electrolyte , 2006 .

[28]  N. Ogata,et al.  Synthesis and proton conductivity of thermally stable polymer electrolyte: poly(benzimidazole) complexes with strong acid molecules , 2000 .

[29]  Brian C. Benicewicz,et al.  High-Temperature Polybenzimidazole Fuel Cell Membranes via a Sol-Gel Process , 2005 .

[30]  Jesse S. Wainright,et al.  High pressure electrical conductivity studies of acid doped polybenzimidazole , 1998 .

[31]  P. Gómez‐Romero,et al.  Proton‐conducting polymers based on benzimidazoles and sulfonated benzimidazoles , 2002 .

[32]  Li Qingfeng,et al.  Phosphoric acid doped polybenzimidazole membranes: Physiochemical characterization and fuel cell applications , 2001 .

[33]  Jesse S. Wainright,et al.  Acid-doped polybenzimidazoles : a new polymer electrolyte , 1995 .

[34]  Norman Munroe,et al.  PARAMETRIC MODEL OF AN INTERMEDIATE TEMPERATURE PEMFC , 2006 .

[35]  Ronghuan He,et al.  The CO Poisoning Effect in PEMFCs Operational at Temperatures up to 200°C , 2003 .

[36]  G. Goward,et al.  Solid-State NMR Study of Two Classic Proton Conducting Polymers: Nafion and Sulfonated Poly(ether ether ketone)s , 2006 .

[37]  Ronghuan He,et al.  Proton conductivity of phosphoric acid doped polybenzimidazole and its composites with inorganic proton conductors , 2003 .

[38]  T. Springer,et al.  Characterization of polymer electrolyte fuel cells using ac impedance spectroscopy , 1996 .

[39]  Norman Munroe,et al.  Three dimensional modeling of high temperature PEM fuel cells , 2006 .

[40]  Andrew B. Bocarsly,et al.  Silicon Oxide Nafion Composite Membranes for Proton-Exchange Membrane Fuel Cell Operation at 80-140°C , 2002 .

[41]  Stephen P. Miller,et al.  A thermodynamic approach to proton conductivity in acid-doped polybenzimidazole , 2001 .

[42]  R. Savinell,et al.  Thermal Stability of Proton Conducting Acid Doped Polybenzimidazole in Simulated Fuel Cell Environments , 1996 .

[43]  Jingwei Hu,et al.  Studies of performance degradation of a high temperature PEMFC based on H3PO4-doped PBI , 2006 .

[44]  R. Savinell,et al.  Electro‐osmotic Drag Coefficient of Water and Methanol in Polymer Electrolytes at Elevated Temperatures , 1996 .

[45]  F. E. Karasz,et al.  Fourier transform infra-red spectroscopy on the thermo-oxidative degradation of polybenzimidazole and of a polybenzimidazole/polyetherimide blend , 1993 .

[46]  Ronghuan He,et al.  PBI‐Based Polymer Membranes for High Temperature Fuel Cells – Preparation, Characterization and Fuel Cell Demonstration , 2004 .

[47]  K. Kreuer,et al.  Proton conductivity in fused phosphoric acid; A 1H/31P PFG-NMR and QNS study , 1993 .

[48]  Jianlu Zhang,et al.  Single PEMFC Design and Validation for High-Temperature MEA Testing and Diagnosis up to 300 ° C , 2007 .

[49]  Zhigang Qi,et al.  Effect of open circuit voltage on performance and degradation of high temperature PBI–H3PO4 fuel cells , 2006 .

[50]  Jesse S. Wainright,et al.  Conductivity of PBI Membranes for High-Temperature Polymer Electrolyte Fuel Cells , 2004 .

[51]  Yanghua Tang,et al.  PEM fuel cell open circuit voltage (OCV) in the temperature range of 23 °C to 120 °C , 2006 .

[52]  N. E. Vanderborgh,et al.  Temperature dependence of water content and proton conductivity in polyperfluorosulfonic acid membranes , 1987 .