Convergence of gradient-based algorithms for the Hartree-Fock equations∗

The numerical solution of the Hartree-Fock equations is a central problem in quantum chemistry for which numerous algorithms exist. Attempts to justify these algorithms mathematically have been made, notably in [E. Cances and C. Le Bris, Math. Mod. Numer. Anal. 34 (2000) 749–774], but, to our knowledge, no complete convergence proof has been published, except for the large-Z result of [M. Griesemer and F. Hantsch, Arch. Rational Mech. Anal. (2011) 170]. In this paper, we prove the convergence of a natural gradient algorithm, using a gradient inequality for analytic functionals due to Łojasiewicz [Ensembles semi-analytiques . Institut des Hautes Etudes Scientifiques (1965)]. Then, expanding upon the analysis of [E. Cances and C. Le Bris, Math. Mod. Numer. Anal. 34 (2000) 749–774], we prove convergence results for the Roothaan and Level-Shifting algorithms. In each case, our method of proof provides estimates on the convergence rate. We compare these with numerical results for the algorithms studied.

[1]  R. Mcweeny,et al.  The density matrix in self-consistent field theory I. Iterative construction of the density matrix , 1956, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[2]  R. Mcweeny,et al.  The density matrix in self-consistent field theory II. Applications in the molecular orbital theory of conjugated systems , 1956, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[3]  S. Łojasiewicz Ensembles semi-analytiques , 1965 .

[4]  V. R. Saunders,et al.  A “Level–Shifting” method for converging closed shell Hartree–Fock wave functions , 1973 .

[5]  Barry Simon,et al.  The Hartree-Fock theory for Coulomb systems , 1977 .

[6]  George B. Bacskay,et al.  A quadratically convergent Hartree—Fock (QC-SCF) method. Application to closed shell systems , 1981 .

[7]  P. Pulay Improved SCF convergence acceleration , 1982 .

[8]  Pierre-Louis Lions,et al.  Solutions of Hartree-Fock equations for Coulomb systems , 1987 .

[9]  Alan Edelman,et al.  The Geometry of Algorithms with Orthogonality Constraints , 1998, SIAM J. Matrix Anal. Appl..

[10]  Roger B. Sidje,et al.  Expokit: a software package for computing matrix exponentials , 1998, TOMS.

[11]  Claude Le Bris,et al.  Mathematical models and methods for ab initio quantum chemistry , 2000 .

[12]  C. Bris,et al.  Can we outperform the DIIS approach for electronic structure calculations , 2000 .

[13]  E. Cancès,et al.  On the convergence of SCF algorithms for the Hartree-Fock equations , 2000 .

[14]  G. Scuseria,et al.  A black-box self-consistent field convergence algorithm: One step closer , 2002 .

[15]  E. Cancès,et al.  Computational quantum chemistry: A primer , 2003 .

[16]  Alain Haraux,et al.  Rate of decay to equilibrium in some semilinear parabolic equations , 2003 .

[17]  José Mario Martínez,et al.  Globally convergent trust-region methods for self-consistent field electronic structure calculations. , 2004, The Journal of chemical physics.

[18]  Julien Salomon,et al.  Convergence of the time-discretized monotonic schemes , 2007 .

[19]  E. Cancès,et al.  Projected gradient algorithms for Hartree-Fock and density matrix functional theory calculations. , 2008, The Journal of chemical physics.

[20]  Trygve Helgaker,et al.  The augmented Roothaan-Hall method for optimizing Hartree-Fock and Kohn-Sham density matrices. , 2008, The Journal of chemical physics.

[21]  François Alouges,et al.  Preconditioned gradient flows for nonlinear eigenvalue problems and application to the Hartree‐Fock functional , 2009 .

[22]  M. Griesemer,et al.  Unique Solutions to Hartree–Fock Equations for Closed Shell Atoms , 2010, 1012.5179.

[23]  Eric Canccs Scf Algorithms for Hartree-fock Electronic Calculations , 2022 .