Towers of function fields and iterated means

Towers of function fields meeting the Drinfeld-Vladut bound with equality were constructed by Gorcal-Stichtenoth (1995, 1996). Modular uniformizations thereof were pointed out by Elkies (1996). We connect this fact to hypergeometric analogs of the arithmetic-geometric mean and related theta series identities discovered by Borweins and Garven.

[1]  Henning Stichtenoth,et al.  Algebraic function fields over finite fields with many rational places , 1995, IEEE Trans. Inf. Theory.

[2]  Pierre Loyer,et al.  Un Lattices, Construction B, and AGM Iterations , 1998, Eur. J. Comb..

[3]  D. V. Chudnovsky,et al.  Approximations and complex multiplication according to Ramanujan , 2000 .

[4]  Henning Stichtenoth,et al.  Algebraic function fields and codes , 1993, Universitext.

[5]  H. Stichtenoth,et al.  A tower of Artin-Schreier extensions of function fields attaining the Drinfeld-Vladut bound , 1995 .

[6]  I. Yu.,et al.  What is the maximum number of points on a curve over $F_2$? , 1982 .

[7]  J. Borwein,et al.  Pi and the AGM: A Study in Analytic Number Theory and Computational Complexity , 1998 .

[8]  Noam D. Elkies,et al.  Explicit Modular Towers , 2001, math/0103107.

[9]  Carlos J. Moreno,et al.  Algebraic curves over finite fields: Frontmatter , 1991 .

[10]  Jonathan M. Borwein,et al.  Hypergeometric analogues of the arithmetic-geometric mean iteration , 1993 .

[11]  M. Tsfasman,et al.  Modular curves, Shimura curves, and Goppa codes, better than Varshamov‐Gilbert bound , 1982 .

[12]  S. Vladut,et al.  Number of points of an algebraic curve , 1983 .

[13]  H. Stichtenoth,et al.  Asymptotically good towers of function fields over finite fields , 1996 .

[14]  S. G. Vladut,et al.  Algebraic-Geometric Codes , 1991 .

[15]  T. Apostol Modular Functions and Dirichlet Series in Number Theory , 1976 .

[16]  Bruce C. Berndt,et al.  Ramanujan’s Theories of Elliptic Functions to Alternative Bases , 1995 .

[17]  H. Stichtenoth,et al.  On the Asymptotic Behaviour of Some Towers of Function Fields over Finite Fields , 1996 .

[18]  Wolfgang Ebeling,et al.  Lattices and Codes: A Course Partially Based on Lectures by Friedrich Hirzebruch , 1994 .

[19]  Jonathan M. Borwein,et al.  A cubic counterpart of Jacobi’s identity and the AGM , 1991 .