Towers of function fields and iterated means
暂无分享,去创建一个
[1] Henning Stichtenoth,et al. Algebraic function fields over finite fields with many rational places , 1995, IEEE Trans. Inf. Theory.
[2] Pierre Loyer,et al. Un Lattices, Construction B, and AGM Iterations , 1998, Eur. J. Comb..
[3] D. V. Chudnovsky,et al. Approximations and complex multiplication according to Ramanujan , 2000 .
[4] Henning Stichtenoth,et al. Algebraic function fields and codes , 1993, Universitext.
[5] H. Stichtenoth,et al. A tower of Artin-Schreier extensions of function fields attaining the Drinfeld-Vladut bound , 1995 .
[6] I. Yu.,et al. What is the maximum number of points on a curve over $F_2$? , 1982 .
[7] J. Borwein,et al. Pi and the AGM: A Study in Analytic Number Theory and Computational Complexity , 1998 .
[8] Noam D. Elkies,et al. Explicit Modular Towers , 2001, math/0103107.
[9] Carlos J. Moreno,et al. Algebraic curves over finite fields: Frontmatter , 1991 .
[10] Jonathan M. Borwein,et al. Hypergeometric analogues of the arithmetic-geometric mean iteration , 1993 .
[11] M. Tsfasman,et al. Modular curves, Shimura curves, and Goppa codes, better than Varshamov‐Gilbert bound , 1982 .
[12] S. Vladut,et al. Number of points of an algebraic curve , 1983 .
[13] H. Stichtenoth,et al. Asymptotically good towers of function fields over finite fields , 1996 .
[14] S. G. Vladut,et al. Algebraic-Geometric Codes , 1991 .
[15] T. Apostol. Modular Functions and Dirichlet Series in Number Theory , 1976 .
[16] Bruce C. Berndt,et al. Ramanujan’s Theories of Elliptic Functions to Alternative Bases , 1995 .
[17] H. Stichtenoth,et al. On the Asymptotic Behaviour of Some Towers of Function Fields over Finite Fields , 1996 .
[18] Wolfgang Ebeling,et al. Lattices and Codes: A Course Partially Based on Lectures by Friedrich Hirzebruch , 1994 .
[19] Jonathan M. Borwein,et al. A cubic counterpart of Jacobi’s identity and the AGM , 1991 .