3D magnetotelluric inversion using a limited-memory quasi-Newton optimization

The limited-memory quasi-Newton method with simple bounds is used to develop a novel, fully 3D magnetotelluric MT inversion technique. This nonlinear inversion is based oniterativeminimizationofaclassicalTikhonovregularized penalty function. However, instead of the usual model space of log resistivities, the approach iterates in a model space with simple bounds imposed on the conductivities of the 3D target. The method requires storage proportional to 2 ncp N,whereNisthenumberofconductivitiestoberecovered and ncp is the number of correction pairs practically, only a few. These requirements are much less than those imposed byotherNewtonmethods,whichusuallyrequirestorageproportional toN M orN N, where M is the number of data tobeinverted.Thederivativesofthepenaltyfunctionarecalculated using an adjoint method based on electromagnetic fieldreciprocity.Theinversioninvolvesallfourentriesofthe MT impedance matrix; the x3D integral equation forwardmodeling code is used as an engine for this inversion. Convergence, performance, and accuracy of the inversion are demonstrated on synthetic numerical examples.After investigating erratic resistivities in the upper part of the model obtainedforoneoftheexamples,weconcludethatthestandard Tikhonov regularization is not enough to provide consistently smooth underground structures.An additional regularizationhelpstoovercometheproblem.

[1]  William Rodi,et al.  Joint 3D Inversion of Marine CSEM And MT Data , 2007 .

[2]  William Rodi,et al.  3-D magnetotelluric inversion for resource exploration , 2001 .

[3]  E. Haber Quasi-Newton methods for large-scale electromagnetic inverse problems , 2005 .

[4]  G. W. Hohmann,et al.  4. Electromagnetic Theory for Geophysical Applications , 1987 .

[5]  Duccio Fanelli,et al.  Electron tomography: a short overview with an emphasis on the absorption potential model for the forward problem , 2008 .

[6]  J. T. Smith,et al.  Three-dimensional electromagnetic modeling using finite difference equations: The magnetotelluric example , 1994 .

[7]  Paul T. Boggs,et al.  Solution Accelerators For Large-scale 3D Electromagnetic Inverse Problems , 2004 .

[8]  Yongwimon Lenbury,et al.  Three-dimensional magnetotelluric inversion : data-space method , 2005 .

[9]  Douglas W. Oldenburg,et al.  Reciprocity in electromagnetics: application to modelling marine magnetometric resistivity data , 2005 .

[10]  Stephen J. Wright,et al.  Numerical Optimization , 2018, Fundamental Statistical Inference.

[11]  Michael S. Zhdanov,et al.  Minimum support nonlinear parametrization in the solution of a 3D magnetotelluric inverse problem , 2004 .

[12]  Anna Avdeeva,et al.  Three-dimensional Magnetotelluric Inversion , 2008 .

[13]  D. Avdeev,et al.  A limited-memory quasi-Newton inversion for 1D magnetotellurics , 2006 .

[14]  Gregory A. Newman,et al.  Three‐dimensional induction logging problems, Part I: An integral equation solution and model comparisons , 2002 .

[15]  Jorge Nocedal,et al.  A Limited Memory Algorithm for Bound Constrained Optimization , 1995, SIAM J. Sci. Comput..

[16]  Gregory A. Newman,et al.  High-Performance Three-Dimensional Electromagnetic Modelling Using Modified Neumann Series. Wide-Band Numerical Solution and Examples , 1997 .

[17]  D. Oldenburg,et al.  NON-LINEAR INVERSION USING GENERAL MEASURES OF DATA MISFIT AND MODEL STRUCTURE , 1998 .

[18]  P. Weidelt,et al.  Inversion of two-dimensional conductivity structures , 1975 .

[19]  Aria Abubakar,et al.  2.5D forward and inverse modeling for interpreting low-frequency electromagnetic measurements , 2008 .

[20]  René-Édouard Plessix,et al.  Resistivity imaging with controlled-source electromagnetic data: depth and data weighting , 2008 .

[21]  William Rodi,et al.  Nonlinear conjugate gradients algorithm for 2-D magnetotelluric inversion , 2001 .

[22]  E. Haber,et al.  On optimization techniques for solving nonlinear inverse problems , 2000 .

[23]  W. Rodi A Technique for Improving the Accuracy of Finite Element Solutions for Magnetotelluric Data , 1976 .

[24]  Gregory A. Newman,et al.  Crosswell electromagnetic inversion using integral and differential equations , 1995 .

[25]  Philip E. Wannamaker,et al.  Advances in three-dimensional magnetotelluric modeling using integral equations , 1991 .

[26]  G. Newman,et al.  Three-dimensional magnetotelluric inversion using non-linear conjugate gradients , 2000 .

[27]  A. N. Tikhonov,et al.  Solutions of ill-posed problems , 1977 .

[28]  Dmitry B. Avdeev,et al.  Three-Dimensional Electromagnetic Modelling and Inversion from Theory to Application , 2005 .