3D magnetotelluric inversion using a limited-memory quasi-Newton optimization
暂无分享,去创建一个
[1] William Rodi,et al. Joint 3D Inversion of Marine CSEM And MT Data , 2007 .
[2] William Rodi,et al. 3-D magnetotelluric inversion for resource exploration , 2001 .
[3] E. Haber. Quasi-Newton methods for large-scale electromagnetic inverse problems , 2005 .
[4] G. W. Hohmann,et al. 4. Electromagnetic Theory for Geophysical Applications , 1987 .
[5] Duccio Fanelli,et al. Electron tomography: a short overview with an emphasis on the absorption potential model for the forward problem , 2008 .
[6] J. T. Smith,et al. Three-dimensional electromagnetic modeling using finite difference equations: The magnetotelluric example , 1994 .
[7] Paul T. Boggs,et al. Solution Accelerators For Large-scale 3D Electromagnetic Inverse Problems , 2004 .
[8] Yongwimon Lenbury,et al. Three-dimensional magnetotelluric inversion : data-space method , 2005 .
[9] Douglas W. Oldenburg,et al. Reciprocity in electromagnetics: application to modelling marine magnetometric resistivity data , 2005 .
[10] Stephen J. Wright,et al. Numerical Optimization , 2018, Fundamental Statistical Inference.
[11] Michael S. Zhdanov,et al. Minimum support nonlinear parametrization in the solution of a 3D magnetotelluric inverse problem , 2004 .
[12] Anna Avdeeva,et al. Three-dimensional Magnetotelluric Inversion , 2008 .
[13] D. Avdeev,et al. A limited-memory quasi-Newton inversion for 1D magnetotellurics , 2006 .
[14] Gregory A. Newman,et al. Three‐dimensional induction logging problems, Part I: An integral equation solution and model comparisons , 2002 .
[15] Jorge Nocedal,et al. A Limited Memory Algorithm for Bound Constrained Optimization , 1995, SIAM J. Sci. Comput..
[16] Gregory A. Newman,et al. High-Performance Three-Dimensional Electromagnetic Modelling Using Modified Neumann Series. Wide-Band Numerical Solution and Examples , 1997 .
[17] D. Oldenburg,et al. NON-LINEAR INVERSION USING GENERAL MEASURES OF DATA MISFIT AND MODEL STRUCTURE , 1998 .
[18] P. Weidelt,et al. Inversion of two-dimensional conductivity structures , 1975 .
[19] Aria Abubakar,et al. 2.5D forward and inverse modeling for interpreting low-frequency electromagnetic measurements , 2008 .
[20] René-Édouard Plessix,et al. Resistivity imaging with controlled-source electromagnetic data: depth and data weighting , 2008 .
[21] William Rodi,et al. Nonlinear conjugate gradients algorithm for 2-D magnetotelluric inversion , 2001 .
[22] E. Haber,et al. On optimization techniques for solving nonlinear inverse problems , 2000 .
[23] W. Rodi. A Technique for Improving the Accuracy of Finite Element Solutions for Magnetotelluric Data , 1976 .
[24] Gregory A. Newman,et al. Crosswell electromagnetic inversion using integral and differential equations , 1995 .
[25] Philip E. Wannamaker,et al. Advances in three-dimensional magnetotelluric modeling using integral equations , 1991 .
[26] G. Newman,et al. Three-dimensional magnetotelluric inversion using non-linear conjugate gradients , 2000 .
[27] A. N. Tikhonov,et al. Solutions of ill-posed problems , 1977 .
[28] Dmitry B. Avdeev,et al. Three-Dimensional Electromagnetic Modelling and Inversion from Theory to Application , 2005 .