Ultra-broadband, wide angle absorber utilizing metal insulator multilayers stack with a multi-thickness metal surface texture

[1]  Wenliang Guo,et al.  Ultra-broadband infrared metasurface absorber: reply. , 2019, Optics express.

[2]  P. Zhan,et al.  Ultra-broadband Tunable Resonant Light Trapping in a Two-dimensional Randomly Microstructured Plasmonic-photonic Absorber , 2017, Scientific Reports.

[3]  Xuejun Lu,et al.  A plasmonic perfect absorber enhanced longwave infrared quantum dot infrared photodetector with high quantum efficiency , 2017 .

[4]  Sergey I. Bozhevolnyi,et al.  Broadband near-infrared metamaterial absorbers utilizing highly lossy metals , 2016, Scientific Reports.

[5]  M. Cecchini,et al.  Ultrastructural Characterization of the Lower Motor System in a Mouse Model of Krabbe Disease , 2016, Scientific Reports.

[6]  V. Rosen,et al.  Corrigendum: NPNT is Expressed by Osteoblasts and Mediates Angiogenesis via the Activation of Extracellular Signal-regulated Kinase , 2016, Scientific Reports.

[7]  K. Fung,et al.  Tungsten based Anisotropic Metamaterial as an Ultra-broadband Absorber , 2016, 1610.09436.

[8]  Haitao Liu,et al.  Broadband terahertz metamaterial absorber based on sectional asymmetric structures , 2016, Scientific Reports.

[9]  S. Bozhevolnyi,et al.  Multilayer tungsten-alumina-based broadband light absorbers for high-temperature applications , 2016 .

[10]  Anthony Lefebvre,et al.  CMOS compatible metal-insulator-metal plasmonic perfect absorbers , 2016 .

[11]  M. Sawicki,et al.  Determining Curie temperature of (Ga,Mn)As samples based on electrical transport measurements: Low Curie temperature case , 2016, 1606.05132.

[12]  Koray Aydin,et al.  Narrow band absorber based on a dielectric nanodisk array on silver film , 2016 .

[13]  Peichen Yu,et al.  Omnidirectional, polarization-independent, ultra-broadband metamaterial perfect absorber using field-penetration and reflected-wave-cancellation. , 2016, Optics express.

[14]  Xinbing Wang,et al.  Perfect narrow band absorber for sensing applications. , 2016, Optics express.

[15]  Jun Wu,et al.  Broadband light absorption by tapered metal-dielectric multilayered grating structures , 2016 .

[16]  Wei Li,et al.  Reversibly tunable coupled and decoupled super absorbing structures , 2016 .

[17]  Eleftherios N. Economou,et al.  Theoretical model of homogeneous metal–insulator–metal perfect multi-band absorbers for the visible spectrum , 2016 .

[18]  Sailing He,et al.  Narrow band perfect absorber for maximum localized magnetic and electric field enhancement and sensing applications , 2016, Scientific Reports.

[19]  Z. Zhu,et al.  Ultrabroadband, More than One Order Absorption Enhancement in Graphene with Plasmonic Light Trapping , 2015, Scientific Reports.

[20]  Xiang Yin,et al.  Ultra-wideband microwave absorber by connecting multiple absorption bands of two different-sized hyperbolic metamaterial waveguide arrays , 2015, Scientific Reports.

[21]  Zhongyang Li,et al.  Omnidirectional, broadband light absorption using large-area, ultrathin lossy metallic film coatings , 2015, Scientific Reports.

[22]  Xiaofeng Li,et al.  Infrared hot-carrier photodetection based on planar perfect absorber. , 2015, Optics letters.

[23]  Fengmin Wu,et al.  An ultra-broadband polarization-independent perfect absorber for the solar spectrum , 2015 .

[24]  Xiaodong Yang,et al.  Broadband perfect absorber based on one ultrathin layer of refractory metal. , 2015, Optics letters.

[25]  Qian-jin Wang,et al.  Ultra-broadband and strongly enhanced diffraction with metasurfaces , 2015, Scientific Reports.

[26]  Sergei A. Tretyakov,et al.  Thin perfect absorbers for electromagnetic waves: Theory, design, and realizations , 2015 .

[27]  G. Dalpian,et al.  DFT+U simulation of the Ti${}_4$O${}_7$-TiO${}_2$ interface , 2015, 1501.05564.

[28]  Sailing He,et al.  Enhanced broadband absorption in gold by plasmonic tapered coaxial holes. , 2014, Optics express.

[29]  M. Qiu,et al.  Metal-insulator-metal plasmonic absorbers: influence of lattice. , 2014, Optics express.

[30]  Xiaodong Yang,et al.  Enhancing intensity and refractive index sensing capability with infrared plasmonic perfect absorbers. , 2014, Optics letters.

[31]  Wei Li,et al.  Metamaterial perfect absorber based hot electron photodetection. , 2014, Nano letters.

[32]  N. Zhang,et al.  Large-scale lithography-free metasurface with spectrally tunable super absorption , 2014, 2014 Conference on Lasers and Electro-Optics (CLEO) - Laser Science to Photonic Applications.

[33]  Ning Dai,et al.  Vapor-deposited amorphous metamaterials as visible near-perfect absorbers with random non-prefabricated metal nanoparticles , 2014, Scientific Reports.

[34]  Haifeng Hu,et al.  Broadband absorption engineering of hyperbolic metafilm patterns , 2014, Scientific Reports.

[35]  Min Qiu,et al.  Lithography-free broadband visible light absorber based on a mono-layer of gold nanoparticles , 2014 .

[36]  N. Mattiucci,et al.  Impedance matched thin metamaterials make metals absorbing , 2013, Scientific Reports.

[37]  Hao Wang,et al.  Perfect selective metamaterial solar absorbers. , 2013, Optics express.

[38]  Yongqian Li,et al.  Surface-enhanced molecular spectroscopy (SEMS) based on perfect-absorber metamaterials in the mid-infrared , 2013, Scientific Reports.

[39]  Wenqi Zhu,et al.  Wafer-scale metasurface for total power absorption, local field enhancement and single molecule Raman spectroscopy , 2013, Scientific Reports.

[40]  Shichao Song,et al.  Great light absorption enhancement in a graphene photodetector integrated with a metamaterial perfect absorber. , 2013, Nanoscale.

[41]  D. Poulikakos,et al.  Facile multifunctional plasmonic sunlight harvesting with tapered triangle nanopatterning of thin films. , 2013, Nanoscale.

[42]  Alper D Ozkan,et al.  Label-Free Nanometer-Resolution Imaging of Biological Architectures through Surface Enhanced Raman Scattering , 2013, Scientific Reports.

[43]  Sailing He,et al.  Ultrabroadband strong light absorption based on thin multilayered metamaterials , 2013, 1306.3289.

[44]  S. Anantha Ramakrishna,et al.  Design of multi-band metamaterial perfect absorbers with stacked metal–dielectric disks , 2013 .

[45]  Min Yan,et al.  Metal–insulator–metal light absorber: a continuous structure , 2013 .

[46]  R. Adato,et al.  Dual-band perfect absorber for multispectral plasmon-enhanced infrared spectroscopy. , 2012, ACS nano.

[47]  P. Lalanne,et al.  Ultrasmall metal-insulator-metal nanoresonators: impact of slow-wave effects on the quality factor , 2012 .

[48]  Junqiao Wang,et al.  Tunable broad-band perfect absorber by exciting of multiple plasmon resonances at optical frequency. , 2012, Optics express.

[49]  Ole Albrektsen,et al.  Efficient absorption of visible radiation by gap plasmon resonators. , 2012, Optics express.

[50]  Sailing He,et al.  Ultra-broadband microwave metamaterial absorber , 2011, 1201.0062.

[51]  Gennady Shvets,et al.  Metamaterial-based integrated plasmonic absorber/emitter for solar thermo-photovoltaic systems , 2011 .

[52]  Koray Aydin,et al.  Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers. , 2011, Nature communications.

[53]  Harald Giessen,et al.  Palladium-based plasmonic perfect absorber in the visible wavelength range and its application to hydrogen sensing. , 2011, Nano letters.

[54]  Willie J Padilla,et al.  Taming the blackbody with infrared metamaterials as selective thermal emitters. , 2011, Physical review letters.

[55]  M. Hentschel,et al.  Infrared perfect absorber and its application as plasmonic sensor. , 2010, Nano letters.

[56]  Yin-Jung Chang,et al.  A Narrowband Metal–Multi-Insulator–Metal Waveguide Plasmonic Bragg Grating , 2010, IEEE Photonics Technology Letters.

[57]  Y. Sergeev,et al.  Interaction of ballistic quasiparticles and vortex configurations in superfluid 3 He-B , 2009, 0901.1519.

[58]  Costas M. Soukoulis,et al.  Wide-angle perfect absorber/thermal emitter in the terahertz regime , 2008, 0807.2479.

[59]  A. Borisov,et al.  Excited states of Na nanoislands on the Cu(111) surface , 2007 .

[60]  H. Miyazaki,et al.  Metal-insulator-metal plasmon nanocavities: Analysis of optical properties , 2007 .

[61]  G. Zocchi,et al.  Local cooperativity mechanism in the DNA melting transition. , 2005, Physical review. E, Statistical, nonlinear, and soft matter physics.

[62]  David R. Smith,et al.  Electromagnetic parameter retrieval from inhomogeneous metamaterials. , 2005, Physical review. E, Statistical, nonlinear, and soft matter physics.

[63]  M. Kafesaki,et al.  Perfect absorbers based on metal–insulator–metal structures in the visible region: a simple approach for practical applications , 2016 .