Markov evolutions and hierarchical equations in the continuum. I: one-component systems

General birth-and-death as well as hopping stochastic dynamics of infinite particle systems in the continuum are considered. We derive corresponding evolution equations for correlation functions and generating functionals. General considerations are illustrated in a number of concrete examples of Markov evolutions appearing in applications.

[1]  Non-equilibrium stochastic dynamics in continuum: The free case , 2007, math/0701736.

[2]  E. Lytvynov,et al.  Glauber dynamics of continuous particle systems , 2003, math/0306252.

[3]  Dmitri Finkelshtein,et al.  Regulation Mechanisms in Spatial Stochastic Development Models , 2008, 0809.0758.

[4]  ER MOLI.,et al.  ON THE RATE OF CONVERGENCE OF SPATIAL BIRTH-AND-DEATH PROCESSES , 2004 .

[5]  Tobias Kuna,et al.  HARMONIC ANALYSIS ON CONFIGURATION SPACE I: GENERAL THEORY , 2002 .

[6]  Nguyen Xuan Xanh,et al.  Integral and differential characterizations of the Gibbs process , 1977, Advances in Applied Probability.

[7]  A. Lenard,et al.  States of classical statistical mechanical systems of infinitely many particles. I , 1975 .

[8]  N. N. Bogolyubov,et al.  Problems of a Dynamical Theory in Statistical Physics , 1959 .

[9]  S. Miracle-Sole,et al.  Mean-Field Theory of the Potts Gas , 2006 .

[10]  R. Ferrière,et al.  From Individual Stochastic Processes to Macroscopic Models in Adaptive Evolution , 2008 .

[11]  D. Finkelshtein,et al.  Measures on two-component configuration spaces , 2007, 0712.1401.

[12]  Nancy L. Garcia,et al.  Birth and death processes as projections of higher-dimensional Poisson processes , 1995, Advances in Applied Probability.

[13]  Time reversible and Gibbsian point processes I. Markovian spatial birth and death processes on a general phase space , 1981 .

[14]  Nicolas Fournier,et al.  A microscopic probabilistic description of a locally regulated population and macroscopic approximations , 2004, math/0503546.

[15]  Yuri Kondratiev,et al.  On non-equilibrium stochastic dynamics for interacting particle systems in continuum , 2008 .

[16]  Tobias Kuna,et al.  Holomorphic Bogoliubov functionals for interacting particle systems in continuum , 2006 .

[17]  D. L. Finkelshtein,et al.  On two-component contact model in continuum with one independent component , 2007 .

[18]  M. Röckner,et al.  Infinite interacting diffusion particles I: Equilibrium process and its scaling limit , 2003, math/0311444.

[19]  Dmitri Finkelshtein,et al.  Vlasov Scaling for Stochastic Dynamics of Continuous Systems , 2010 .

[20]  Anatoli V. Skorokhod,et al.  ON CONTACT PROCESSES IN CONTINUUM , 2006 .

[21]  A. Lenard,et al.  Correlation functions and the uniqueness of the state in classical statistical mechanics , 1973 .

[22]  Mathew D. Penrose,et al.  Existence and spatial limit theorems for lattice and continuum particle systems , 2008 .

[23]  Dmitri Finkelshtein,et al.  An approximative approach for construction of the Glauber dynamics in continuum , 2009 .

[24]  Time reversible and Gibbsian point processes, II. Markovian particle jump processes on a general phase space , 1982 .

[25]  Yuri Kondratiev,et al.  Nonequilibrium Glauber-type dynamics in continuum , 2006 .

[26]  A. Lenard,et al.  States of classical statistical mechanical systems of infinitely many particles. II. Characterization of correlation measures , 1975 .

[27]  Yuri Kondratiev,et al.  CORRELATION FUNCTIONS AND INVARIANT MEASURES IN CONTINUOUS CONTACT MODEL , 2008 .

[28]  E. Lytvynov,et al.  On a spectral representation for correlation measures in configuration space analysis , 2006, math/0608343.

[29]  Nancy L. Garcia,et al.  Spatial birth and death processes as solutions of stochastic equations , 2006 .

[30]  Nancy L. Garcia,et al.  Spatial Point Processes and the Projection Method , 2008 .

[31]  Yuri G. Kondratiev,et al.  Equilibrium Glauber dynamics of continuous particle systems as a scaling limit of Kawasaki dynamics , 2006 .

[32]  Diffusion approximation for equilibrium Kawasaki dynamics in continuum , 2007, math/0702178.

[33]  E. Lytvynov,et al.  Equilibrium Kawasaki dynamics of continuous particle systems , 2005 .

[34]  Hans Zessin,et al.  Integral and Differential Characterizations of the GIBBS Process , 1979 .

[35]  Hydrodynamic limits for the free Kawasaki dynamics of continuous particle systems , 2009, 0912.1312.

[36]  D. W. Stroock,et al.  Nearest neighbor birth and death processes on the real line , 1978 .

[37]  D. Ruelle Statistical Mechanics: Rigorous Results , 1999 .

[38]  C. Preston Spatial birth and death processes , 1975, Advances in Applied Probability.

[39]  Dmitri Finkelshtein,et al.  Individual Based Model with Competition in Spatial Ecology , 2008, SIAM J. Math. Anal..

[40]  Yuri Kondratiev,et al.  One-Particle Subspace of the Glauber Dynamics Generator for Continuous Particle Systems , 2004 .

[41]  T. Liggett,et al.  Stochastic Interacting Systems: Contact, Voter and Exclusion Processes , 1999 .

[42]  K. Fichtner,et al.  Characterization of states of infinite boson systems , 1991 .

[43]  R. Durrett,et al.  Evolution in predator–prey systems , 2009, 0907.3702.

[44]  Stefan Grosskinsky Warwick,et al.  Interacting Particle Systems , 2016 .

[45]  Spectral Analysis of a Stochastic Ising Model in Continuum , 2007 .

[46]  Bernard W. Silverman,et al.  Convergence of spatial birth-and-death processes , 1981 .

[47]  Olle Häggström,et al.  Phase transition in continuum Potts models , 1996 .

[48]  T. Kuna,et al.  On the relations between Poissonian white noise analysis and harmonic analysis on configuration spaces , 2004 .