A comparative study of activated carbon-based symmetric supercapacitors in Li2SO4 and KOH aqueous electrolytes

[1]  M. S. Dresselhaus,et al.  Poly(vinylidene chloride)-Based Carbon as an Electrode Material for High Power Capacitors with an Aqueous Electrolyte , 2001 .

[2]  G. Lu,et al.  Hierarchical porous carbons with high performance for supercapacitor electrodes , 2009 .

[3]  Chi-Chang Hu,et al.  A novel vanadium oxide deposit for the cathode of asymmetric lithium-ion supercapacitors , 2010 .

[4]  L. Kong,et al.  Porous cobalt hydroxide film electrodeposited on nickel foam with excellent electrochemical capacitive behavior , 2011 .

[5]  Feng Li,et al.  Hierarchical porous nickel oxide and carbon as electrode materials for asymmetric supercapacitor , 2008 .

[6]  H. Gong,et al.  Capacitance decay of nanoporous nickel hydroxide , 2010 .

[7]  Jianfang Wang,et al.  Graphene–MnO2 and graphene asymmetrical electrochemical capacitor with a high energy density in aqueous electrolyte , 2011 .

[8]  F. Béguin,et al.  A symmetric carbon/carbon supercapacitor operating at 1.6 V by using a neutral aqueous solution , 2010 .

[9]  Xiaoyi Liang,et al.  Effect of oxygen-containing functional groups on the impedance behavior of activated carbon-based electric double-layer capacitors , 2011 .

[10]  B. Conway Electrochemical Supercapacitors: Scientific Fundamentals and Technological Applications , 1999 .

[11]  Wei Xing,et al.  Superior electric double layer capacitors using ordered mesoporous carbons , 2006 .

[12]  Xianyou Wang,et al.  Preparation and performances of carbon aerogel microspheres for the application of supercapacitor , 2011 .

[13]  B. Yi,et al.  Capacitive Properties of Activated Carbon in K4Fe(CN)6 , 2011 .

[14]  R. D. Levie,et al.  On porous electrodes in electrolyte solutions: I. Capacitance effects☆ , 1963 .

[15]  Xiong Zhang,et al.  Stable dispersions of graphene and highly conducting graphene films: a new approach to creating colloids of graphene monolayers. , 2009, Chemical communications.

[16]  F. Béguin,et al.  Towards the mechanism of electrochemical hydrogen storage in nanostructured carbon materials , 2004 .

[17]  Gaoping Cao,et al.  What is the choice for supercapacitors: graphene or graphene oxide? , 2011 .

[18]  K. Beccu,et al.  Abschätzung der porenstruktur poröser elektroden aus impedanzmessungen , 1976 .

[19]  Gengping Jiang,et al.  High voltage supercapacitors using hydrated graphene film in a neutral aqueous electrolyte , 2011 .

[20]  John R. Miller,et al.  Electrochemical Capacitors for Energy Management , 2008, Science.

[21]  Lili Liu,et al.  Aqueous supercapacitors of high energy density based on MoO3 nanoplates as anode material. , 2011, Chemical communications.

[22]  C. M. Li,et al.  Supercapacitance of Solid Carbon Nanofibers Made from Ethanol Flames , 2008 .

[23]  A. Lewandowski,et al.  Performance of carbon–carbon supercapacitors based on organic, aqueous and ionic liquid electrolytes , 2010 .

[24]  Z. Xiong,et al.  Activated Carbon-Based Supercapacitors Using Li 2 SO 4 Aqueous Electrolyte , 2012 .

[25]  R. Kötz,et al.  Principles and applications of electrochemical capacitors , 2000 .

[26]  Xianzhong Sun,et al.  One-step solvothermal synthesis of graphene/Mn3O4 nanocomposites and their electrochemical properties for supercapacitors , 2012 .

[27]  Hongda Du,et al.  Asymmetric Activated Carbon-Manganese Dioxide Capacitors in Mild Aqueous Electrolytes Containing Alkaline-Earth Cations , 2009 .

[28]  Dongsheng Ma,et al.  The governing self-discharge processes in activated carbon fabric-based supercapacitors with different organic electrolytes , 2011 .

[29]  Y. Gogotsi,et al.  Materials for electrochemical capacitors. , 2008, Nature materials.

[30]  Yen‐Po Lin,et al.  Characterization of MnFe 2O 4/LiMn 2O 4 aqueous asymmetric supercapacitor , 2011 .

[31]  Yuping Wu,et al.  Study on electrochemical performance of activated carbon in aqueous Li2SO4, Na2SO4 and K2SO4 electrolytes , 2008 .

[32]  T. Brousse,et al.  Electrolytes for hybrid carbon–MnO2 electrochemical capacitors , 2010 .

[33]  Xiong Zhang,et al.  Enhanced capacitance and rate capability of graphene/polypyrrole composite as electrode material for , 2011 .

[34]  R. Ruoff,et al.  Carbon-Based Supercapacitors Produced by Activation of Graphene , 2011, Science.

[35]  Yafei Zhang,et al.  Carbon nanotube arrays supported manganese oxide and its application in electrochemical capacitors , 2011 .

[36]  Pierre-Louis Taberna,et al.  Modification of Al current collector surface by sol–gel deposit for carbon–carbon supercapacitor applications , 2004 .

[37]  S. Pyun,et al.  Kinetics of Double-Layer Charging/Discharging of Activated Carbon Electrodes: Role of Surface Acidic Functional Groups , 2002 .

[38]  Wen‐Cui Li,et al.  Dual functions of activated carbon in a positive electrode for MnO 2-based hybrid supercapacitor , 2011 .

[39]  John Wang,et al.  Ordered mesoporous alpha-MoO3 with iso-oriented nanocrystalline walls for thin-film pseudocapacitors. , 2010, Nature materials.