How wood evolves: a new synthesis

Recent advances in wood physiology, molecular phylogeny, and ultrastructure (chiefly scanning electron microscopy, SEM), as well as important new knowledge in traditional fields, provide the basis for a new vision of how wood evolves. Woody angiosperms have, in the main, shifted from conductive safety to conductive efficiency (with many variations and modifications) and from ability to resist cavitation (low vulnerability) to ability to refill vessels. The invention of the vessel was a kind of dimorphism (vessel elements plus tracheids) that permitted division of labor and many kinds of wood repatterning that suit conductive safety–efficiency trade-offs. Angiosperms were primarily adapted to mesic habitats but were not failures or “unstable.” They have survived to the present in such habitats well, along with older structural adaptations (e.g., the scalariform perforation plate) that are still suited to such habitats. These “primitive” features are evident in earlier branchings of phylogenetic trees based...

[1]  J. Pausas,et al.  Physiological differences explain the co-existence of different regeneration strategies in Mediterranean ecosystems. , 2014, The New phytologist.

[2]  T. Feild,et al.  Climbing Habit and Ecophysiology of Schisandra glabra (Schisandraceae): Implications for the Early Evolution of Angiosperm Lianescence , 2013, International Journal of Plant Sciences.

[3]  V. Angyalossy,et al.  Wood Anatomy and Evolution: A Case Study in the Bignoniaceae , 2013, International Journal of Plant Sciences.

[4]  E. Smets,et al.  Insular Woodiness on the Canary Islands: A Remarkable Case of Convergent Evolution , 2013, International Journal of Plant Sciences.

[5]  S. Carlquist More Woodiness/Less Woodiness: Evolutionary Avenues, Ontogenetic Mechanisms , 2013, International Journal of Plant Sciences.

[6]  K. Rajput,et al.  Stem anatomy and development of successive cambia in Hebanthe eriantha (Poir.) Pedersen: a neotropical climbing species of the Amaranthaceae , 2013, Plant Systematics and Evolution.

[7]  S. Carlquist Interxylary phloem: Diversity and functions , 2013, Brittonia.

[8]  S. Carlquist Monocot Xylem Revisited: New Information, New Paradigms , 2012, The Botanical Review.

[9]  E. Smets,et al.  The multiple fuzzy origins of woodiness within Balsaminaceae using an integrated approach. Where do we draw the line? , 2012, Annals of botany.

[10]  S. Jansen,et al.  Anatomical features associated with water transport in imperforate tracheary elements of vessel-bearing angiosperms. , 2011, Annals of botany.

[11]  D. E. Soltis,et al.  Angiosperm phylogeny: 17 genes, 640 taxa. , 2011, American journal of botany.

[12]  H. Beeckman,et al.  Successive Cambia: A Developmental Oddity or an Adaptive Structure? , 2011, PloS one.

[13]  S. Carlquist Caryophyllales: a key group for understanding wood anatomy character states and their evolution. , 2010 .

[14]  S. Carlquist,et al.  Caryophyllales: a key group for understanding wood anatomy character states and their evolution. , 2010 .

[15]  David C. Tank,et al.  Phylogeny and Phylogenetic Nomenclature of the Campanulidae Based on an Expanded Sample of Genes and Taxa , 2010 .

[16]  M. Kohonen,et al.  On the Function of Wall Sculpturing in Xylem Conduits , 2009 .

[17]  S. Carlquist Xylem heterochrony: an unappreciated key to angiosperm origin and diversifications. , 2009 .

[18]  S. Jansen,et al.  Morphological variation of intervessel pit membranes and implications to xylem function in angiosperms. , 2009, American journal of botany.

[19]  S. Carlquist Non-random vessel distribution in woods: patterns, modes, diversity, correlations. , 2009 .

[20]  David C. Tank,et al.  An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: , 2009 .

[21]  V. Funk Systematics, evolution, and biogeography of Compositae , 2009 .

[22]  J. Sperry,et al.  A case-study of water transport in co-occurring ring- versus diffuse-porous trees: contrasts in water-status, conducting capacity, cavitation and vessel refilling. , 2008, Tree physiology.

[23]  Brendan Choat,et al.  Structure and function of bordered pits: new discoveries and impacts on whole-plant hydraulic function. , 2008, The New phytologist.

[24]  E. Schneider,et al.  Pit membrane remnants in perforation plates and other vessel details of Cornales , 2008, Brittonia.

[25]  Mark C. Brundrett Mycorrhizal Associations: The Web Resource , 2008 .

[26]  J. Sperry,et al.  Hydraulic Consequences of Vessel Evolution in Angiosperms , 2007, International Journal of Plant Sciences.

[27]  J. Sperry,et al.  Water Transport in Vesselless Angiosperms: Conducting Efficiency and Cavitation Safety , 2007, International Journal of Plant Sciences.

[28]  S. Carlquist Successive cambia revisited: ontogeny, histology, diversity, and functional significance , 2007 .

[29]  W. Ieperen Ion-mediated changes of xylem hydraulic resistance in planta: fact or fiction? , 2007 .

[30]  S. Carlquist Bordered pits in ray cells and axial parenchyma: the histology of conduction, storage, and strength in living wood cells , 2007 .

[31]  S. Carlquist,et al.  WOOD ANATOMY OF TASMANNIA; SUMMARY OF WOOD ANATOMY OF WINTERACEAE , 2007 .

[32]  S. Carlquist Wood Anatomy of Crossosomatales: Patterns of Wood Evolution with Relation to Phylogeny and Ecology , 2007 .

[33]  S. Jansen,et al.  The micromorphology of pit membranes in tracheary elements of ericales: new records of tori or pseudo-tori? , 2006, Annals of botany.

[34]  J. Sperry,et al.  Size and function in conifer tracheids and angiosperm vessels. , 2006, American journal of botany.

[35]  J. Sperry,et al.  Torus-Margo Pits Help Conifers Compete with Angiosperms , 2005, Science.

[36]  S. Carlquist Wood anatomy of Krameriaceae with comparisons with Zygophyllaceae: phylesis, ecology and systematics , 2005 .

[37]  William A. Paddock,et al.  Do Xylem Fibers Affect Vessel Cavitation Resistance?1 , 2005, Plant Physiology.

[38]  J. Sperry,et al.  Comparative analysis of end wall resistivity in xylem conduits , 2005 .

[39]  S. Jansen,et al.  Changes in pit membrane porosity due to deflection and stretching: the role of vestured pits. , 2004, Journal of experimental botany.

[40]  D. Ackerly,et al.  Adaptation, Niche Conservatism, and Convergence: Comparative Studies of Leaf Evolution in the California Chaparral , 2004, The American Naturalist.

[41]  R. Robichaux,et al.  Tissue elastic properties of eight Hawaiian Dubautia species that differ in habitat and diploid chromosome number , 1985, Oecologia.

[42]  L. Buhr Wood anatomy of theSarraceniaceae; ecological and evolutionary implications , 1977, Plant Systematics and Evolution.

[43]  W. Baird,et al.  Warts in the evolution of angiosperm wood , 1974, Wood Science and Technology.

[44]  V. Vallejo,et al.  Cavitation, stomatal conductance, and leaf dieback in seedlings of two co-occurring Mediterranean shrubs during an intense drought. , 2003, Journal of experimental botany.

[45]  Peter Gasson,et al.  Comparative wood anatomy of epacrids (Styphelioideae, Ericaceae s.L.). , 2003, Annals of botany.

[46]  S. Jansen,et al.  Vestured Pits: Do They Promote Safer Water Transport? , 2003, International Journal of Plant Sciences.

[47]  N. Holbrook,et al.  Relations between stomatal closure, leaf turgor and xylem vulnerability in eight tropical dry forest trees , 2003 .

[48]  B. Choat,et al.  Pit Membrane Porosity and Water Stress-Induced Cavitation in Four Co-Existing Dry Rainforest Tree Species , 2003, Plant Physiology.

[49]  N. Holbrook,et al.  The Dynamics of “Dead Wood”: Maintenance of Water Transport Through Plant Stems1 , 2002, Integrative and comparative biology.

[50]  N. Holbrook,et al.  HARDLY A RELICT: FREEZING AND THE EVOLUTION OF VESSELLESS WOOD IN WINTERACEAE , 2002, Evolution; international journal of organic evolution.

[51]  Regis B. Miller,et al.  Wood Anatomy of Corynocarpaceae is Consistent with Cucurbitalean Placement , 2009 .

[52]  U K Vogt,et al.  Hydraulic vulnerability, vessel refilling, and seasonal courses of stem water potential of Sorbus aucuparia L. and Sambucus nigra L. , 2001, Journal of experimental botany.

[53]  Prof. Dr. Sherwin Carlquist,et al.  Comparative Wood Anatomy , 2001, Springer Series in Wood Science.

[54]  Thomas Appel,et al.  Plant Water Relationships , 2001 .

[55]  W. Kress,et al.  Angiosperm phylogeny inferred from 18S rDNA, rbcL, and atpB sequences , 2000 .

[56]  N. Holbrook,et al.  Bordered pit structure and vessel wall surface properties. Implications for embolism repair. , 2000, Plant physiology.

[57]  M. Khan,et al.  Effects of Salinity on Growth, Water Relations and Ion Accumulation of the Subtropical Perennial Halophyte, Atriplex griffithii var. stocksii , 2000 .

[58]  S. Carlquist Wood Anatomy of Fouquieriaceae in Relation to Habit, Ecology, and Systematics; Nature of Meristems in Wood and Bark , 2000 .

[59]  J. Sperry,et al.  Drought experience and cavitation resistance in six shrubs from the Great Basin, Utah , 2000 .

[60]  N. Holbrook,et al.  Embolism repair and xylem tension: Do We need a miracle? , 1999, Plant physiology.

[61]  A. Nardini,et al.  Refilling of embolized vessels in young stems of laurel. Do We need a new paradigm? , 1999, Plant physiology.

[62]  Mccully Root xylem embolisms and refilling. Relation To water potentials of soil, roots, and leaves, and osmotic potentials of root xylem Sap , 1999, Plant physiology.

[63]  S. Carlquist Wood and bark anatomy of Schisandraceae: implications for phylogeny, habit, and vessel evolution , 1999 .

[64]  S. Carlquist Wood Anatomy of Dubautia (Asteraceae: Madiinae) in Relation to Adaptive Radiation , 1998 .

[65]  A. R. Ennos,et al.  Resistances to fluid flow of model xylem vessels with simple and scalariform perforation plates , 1998 .

[66]  M. Borghetti,et al.  Impact of long-term drought on xylem embolism and growth in Pinus halepensis Mill. , 1998, Trees.

[67]  M. Mccully,et al.  Daily embolism and refilling of xylem vessels in the roots of field-grown maize. , 1998, The New phytologist.

[68]  F. Ewers,et al.  Xylem dysfunction caused by water stress and freezing in two species of co-occurring chaparral shrubs , 1997 .

[69]  J. Fisher,et al.  Survey of Root Pressure in Tropical Vines and Woody Species , 1997, International Journal of Plant Sciences.

[70]  J. Pate,et al.  Nitrogen and phosphorus nutrition in mycorrhizal Epacridaceae of south-west Australia , 1996 .

[71]  S. Halloy,et al.  Comparative leaf morphology spectra of plant communities in New Zealand, the Andes and the European Alps , 1996 .

[72]  M. Gullo,et al.  Xylem recovery from cavitation-induced embolism in young plants of Laurus nobilis: a possible mechanism. , 1996, The New phytologist.

[73]  P. Baas,et al.  Parallelism and Reversibility in Xylem Evolution a Review , 1996 .

[74]  I. Kovář Morphology and Anatomy , 1996 .

[75]  S. Carlquist Wood Anatomy of Compositae: A Summary, With Comments on Factors Controlling Wood Evolution , 1996 .

[76]  F. Ewers,et al.  Conduit diameter and drought‐induced embolism in Salvia mellifera Greene (Labiatae) , 1994 .

[77]  M. Gregory Bibliography of systematic wood anatomy of dicotyledons , 1994 .

[78]  P. Schulte,et al.  Water Flow Through Vessel Perforation Plates—A Fluid Mechanical Approach , 1993 .

[79]  J. Mauseth Water-storing and Cavitation-preventing Adaptations in Wood of Cacti , 1993 .

[80]  P. Schulte,et al.  Water Flow Through Vessel Perforation Plates—The Effects of Plate Angle and Thickness for Liriodendron tulipifera , 1993 .

[81]  W. Dickison,et al.  Morphology and anatomy of the malagasy genus Physena (Physenaceae), with a discussion of the relationships of the genus , 1993 .

[82]  T. Fujii Application of a Resin Casting Method to Wood Anatomy of Some Japanese Fagaceae Species , 1993 .

[83]  James F. Smith Phylogenetics of seed plants : An analysis of nucleotide sequences from the plastid gene rbcL , 1993 .

[84]  M. Tyree,et al.  A theoretical model of hydraulic conductivity recovery from embolism with comparison to experimental data on Acer saccharum , 1992 .

[85]  S. Carlquist PIT MEMBRANE REMNANTS IN PERFORATION PLATES OF PRIMITIVE DICOTYLEDONS AND THEIR SIGNIFICANCE , 1992 .

[86]  B. Welch The structure , 1992 .

[87]  J. Fisher,et al.  The Biology of Vines : Water flux and xylem structure in vines , 1992 .

[88]  F. Ewers,et al.  The hydraulic architecture of trees and other woody plants , 1991 .

[89]  S. Carlquist Leaf anatomy of Bruniaceae: ecological, systematic and phylogenetic aspects , 1991 .

[90]  M. Hanson,et al.  Wood and stem anatomy of Convolvulaceae: a survey , 1991 .

[91]  W. Pickard How might a tracheary element which is embolized by day be healed by night , 1989 .

[92]  S. Carlquist Wood Anatomy of Tasmannia , 1989 .

[93]  S. Carlquist Wood and Bark Anatomy of Empetraceae; Comments on Paedomorphosis in Woods of Certain Small Shrubs , 1989 .

[94]  S. Carlquist,et al.  Wood Anatomy of Papaveraceae, with Comments on Vessel Restriction Patterns , 1988 .

[95]  S. Carlquist Diagonal and Tangential Vessel Aggregations in Wood: Function and Relationship to Vasecentric Tracheids , 1987 .

[96]  Thomas J. Givnish,et al.  On the economy of plant form and function. , 1988 .

[97]  M. Tyree,et al.  Detection of Xylem Cavitation in Corn under Field Conditions. , 1986, Plant physiology.

[98]  J. Sperry,et al.  Relationship of Xylem Embolism to Xylem Pressure Potential, Stomatal Closure, and Shoot Morphology in the Palm Rhapis excelsa. , 1986, Plant physiology.

[99]  S. Carlquist Observations on Functional Wood Histology of Vines and Lianas , 1985 .

[100]  D. Hoekman,et al.  Ecological Wood Anatomy of the Woody Southern Californian Flora , 1985 .

[101]  S. Carlquist Vasicentric Tracheids as a Drought Survival Mechanism in the Woody Flora of Southern California and Similar Regions; Review of Vasicentric Tracheids , 1985 .

[102]  S. Carlquist Vessel Grouping in Dicotyledon Wood , 1984 .

[103]  B. Welle,et al.  Systematic wood anatomy and affinities of the Urticaceae , 1984 .

[104]  M. Zimmermann Xylem Structure and the Ascent of Sap , 1983, Springer Series in Wood Science.

[105]  S. Carlquist WOOD ANATOMY OF ILLICIUM (ILLICIACEAE): PHYLOGENETIC, ECOLOGICAL, AND FUNCTIONAL INTERPRETATIONS , 1982 .

[106]  B. Meylan,et al.  Cell wall hydrolysis in the tracheary elements of the secondary xylem , 1982 .

[107]  S. Carlquist Wood Anatomy of Onagraceae: Further Species; Root Anatomy; Significance of Vestured Pits and Allied Structures in Dicotyledons , 1982 .

[108]  M. Zimmermann,et al.  Vessel-length distribution in stems of some American woody plants , 1981 .

[109]  F. C. Chréeatien A scanning electron microscope study , 1980 .

[110]  S. Carlquist Further Concepts in Ecological Wood Anatomy, with Comments on Recent Work in Wood Anatomy and Evolution , 1980 .

[111]  M. Zimmermann,et al.  Resistance to Water Flow in Xylem Vessels , 1979 .

[112]  P. Raven,et al.  Topics in Plant Population Biology , 1979 .

[113]  T. Givnish On the Adaptive Significance of Leaf Form , 1979 .

[114]  S. Carlquist Wood Anatomy of Bruniaceae: Correlations with Ecology, Phylogeny, Organography , 1978 .

[115]  B. Meylan,et al.  The structure of New Zealand woods , 1978 .

[116]  A. Gibson Woody Anatomy of Platyopuntias , 1978 .

[117]  A. Gibson Wood Anatomy of Opuntias with Cylindrical to Globular Stems , 1977, Botanical Gazette.

[118]  W. Larcher Physiological Plant Ecology , 1977 .

[119]  S. Carlquist Ecological strategies of xylem evolution , 1975 .

[120]  J. Milburn,et al.  STUDIES OF CAVITATION IN ISOLATED VASCULAR BUNDLES AND WHOLE LEAVES OF PLANTAGO MAJOR L. , 1974 .

[121]  A. Gibson Comparative anatomy of secondary xylem in Cactoideae (Cactaceae). , 1973 .

[122]  M. Zimmermann,et al.  Studies on the release of sugar into the vessels of sugar maple (Acer saccharum) , 1973 .

[123]  M. Gregory,et al.  Funktionelle Histologie der sekundaren Sprossachse I. Das Holz , 1972 .

[124]  B. Meylan,et al.  Scalariform Perforation Plate Development in Laurelia novae-zelandiae A. Cunn. : A Scanning Electron Microscope Study , 1972 .

[125]  S. Carlquist Wood Anatomy of Lobelioideae (Campanulaceae) , 1969 .

[126]  J. Kuijt,et al.  The Biology of Parasitic Flowering Plants , 1969 .

[127]  B. Cumbie DEVELOPMENTAL CHANGES IN THE VASCULAR CAMBIUM OF POLYGONUM LAPATHIFOLIUM , 1969 .

[128]  P. Zamora,et al.  PRIMARY XYLEM ELEMENTS AND ELEMENT ASSOCIATIONS OF ANGIOSPERMS , 1965 .

[129]  T. Davis High Root-Pressures in Palms , 1961, Nature.

[130]  S. Carlquist Wood anatomy of Cichorieae (Compositae). , 1960 .

[131]  D. F. Cutler,et al.  Anatomy of the dicotyledons , 1950 .

[132]  V. I. Cheadle THE ORIGIN AND CERTAIN TRENDS OF SPECIALIZATION OF THE VESSEL IN THE MONOCOTYLEDONEAE , 1943 .

[133]  V. I. Cheadle THE OCCURRENCE AND TYPES OF VESSELS IN THE VARIOUS ORGANS OF THE PLANT IN THE MONOCOTYLEDONEAE , 1942 .

[134]  Elso S. Barghoorn join The Ontogenetic Development and Phylogenetic Specialization of Rays in the Xylem of Dicotyledons-III. The Elimination of Rays , 1941 .

[135]  E. Barghoorn THE ONTOGENETIC DEVELOPMENT AND PHYLOGENETIC SPECIALIZATION OF RAYS IN THE XYLEM OF DICOTYLEDONS. II. MODIFICATION OF THE MULTISERIATE AND UNISERIATE RAYS , 1941 .

[136]  E. Barghoorn The ontogenetic development and phylogenetic specialization of rays in the xylem of dicotyledons. I. The primitive ray structure. , 1940 .

[137]  E. Barghoorn The origin of ray initials in the cambium. , 1940 .

[138]  D. A. Kribs Salient Lines of Structural Specialization in the Wood Parenchyma of Dicotyledons , 1937 .

[139]  D. A. Kribs Salient Lines of Structural Specialization in the Wood Rays of Dicotyledons , 1935, Botanical Gazette.

[140]  F. H. Frost Specialization in Secondary Xylem of Dicotyledons. III. Specialization of Lateral Wall of Vessel Segment , 1931, Botanical Gazette.

[141]  F. H. Frost Specialization in Secondary Xylem of Dicotyledons. II. Evolution of End Wall of Vessel Segment , 1930, Botanical Gazette.

[142]  F. H. Frost Specialization in Secondary Xylem of Dicotyledons. I. Origin of Vessel , 1930, Botanical Gazette.

[143]  Karl Schnarf,et al.  Handbuch der Pflanzenanatomie , 1928, Nature.

[144]  H. Pfeiffer Das abnorme Dickenwachstum , 1926 .

[145]  I. Bailey,et al.  Size Variation in Tracheary Cells: I. A Comparison between the Secondary Xylems of Vascular Cryptogams, Gymnosperms and Angiosperms , 1918 .

[146]  E. W. Sinnott,et al.  THE CLIMATIC DISTRIBUTION OF CERTAIN TYPES OF ANGIOSPERM LEAVES , 1916 .

[147]  H. Kowarzyk Structure and Function. , 1910, Nature.

[148]  H. Solereder Über den systematischen Wert der Holzstructur bei den Dicotyledonen: Inaugural-Dissertation zur Erlangung der Doctorwürde , 1885 .

[149]  Wood Anatomy of the Sarraceniaceae ; Ecological and Evolutionary Implications , 2022 .