A comparative analysis of attitude estimation for pedestrian navigation with smartphones

We investigate the precision of attitude estimation solutions in the context of Pedestrian Dead-Reckoning (PDR) with commodity smartphones and inertial/magnetic sensors. We propose a concise comparison and analysis of a number of attitude filtering methods in this setting. We conduct an experimental study with a precise ground truth obtained with a motion capture system. We precisely quantify the error in attitude estimation obtained with each filter which combines a 3-axis accelerometer, a 3-axis magnetometer and a 3-axis gyroscope measurements. We discuss the obtained results and analyse advantages and limitations of current technology for further PDR research.

[1]  Valérie Renaudin,et al.  Magnetic, Acceleration Fields and Gyroscope Quaternion (MAGYQ)-Based Attitude Estimation with Smartphone Sensors for Indoor Pedestrian Navigation , 2014, Sensors.

[2]  Yong Li,et al.  Allan Variance Analysis on Error Characters of MEMS Inertial Sensors for an FPGA-based GPS / INS System , 2008 .

[3]  Muhammad Haris Afzal,et al.  New method for magnetometers based orientation estimation , 2010, IEEE/ION Position, Location and Navigation Symposium.

[4]  L. Miller Indoor Navigation for First Responders : A Feasibility Study , 2006 .

[5]  Philippe Martin,et al.  Design and implementation of a low-cost observer-based attitude and heading reference system , 2010 .

[6]  Robert E. Mahony,et al.  Nonlinear Complementary Filters on the Special Orthogonal Group , 2008, IEEE Transactions on Automatic Control.

[7]  I. Bar-Itzhack,et al.  Novel quaternion Kalman filter , 2002, IEEE Transactions on Aerospace and Electronic Systems.

[8]  Pierre Genevès,et al.  Mobile Augmented Reality Applications for Smart Cities , 2014, ERCIM News.

[9]  J. Kuipers Quaternions and Rotation Sequences , 1998 .

[10]  Haiying Hou,et al.  Modeling inertial sensors errors using Allan variance , 2004 .

[11]  Du Q. Huynh,et al.  Metrics for 3D Rotations: Comparison and Analysis , 2009, Journal of Mathematical Imaging and Vision.

[12]  R. Mautz Indoor Positioning Technologies , 2012 .

[13]  Valérie Renaudin,et al.  Magnetic field based heading estimation for pedestrian navigation environments , 2011, 2011 International Conference on Indoor Positioning and Indoor Navigation.

[14]  James Diebel,et al.  Representing Attitude : Euler Angles , Unit Quaternions , and Rotation Vectors , 2006 .

[15]  John L. Crassidis,et al.  Survey of nonlinear attitude estimation methods , 2007 .

[16]  Valérie Renaudin,et al.  Step Length Estimation Using Handheld Inertial Sensors , 2012, Sensors.

[17]  Sebastian Madgwick,et al.  Estimation of IMU and MARG orientation using a gradient descent algorithm , 2011, 2011 IEEE International Conference on Rehabilitation Robotics.

[18]  Y. Manoli,et al.  Autocalibration of MEMS accelerometers , 2012, 2012 IEEE International Instrumentation and Measurement Technology Conference Proceedings.

[19]  Ken Shoemake,et al.  Animating rotation with quaternion curves , 1985, SIGGRAPH.

[20]  Hassen Fourati,et al.  Heterogeneous Data Fusion Algorithm for Pedestrian Navigation via Foot-Mounted Inertial Measurement Unit and Complementary Filter , 2015, IEEE Transactions on Instrumentation and Measurement.

[21]  Noureddine Manamanni,et al.  A Nonlinear Filtering Approach for the Attitude and Dynamic Body Acceleration Estimation Based on Inertial and Magnetic Sensors: Bio-Logging Application , 2011, IEEE Sensors Journal.