Von Neumann algebras, L-algebras, Baer *-monoids, and Garside groups
暂无分享,去创建一个
[1] Wolfgang Rump,et al. Multi-posets in algebraic logic, group theory, and non-commutative topology , 2016, Ann. Pure Appl. Log..
[2] T. Gateva-Ivanova,et al. Semigroups ofI-Type , 1998 .
[3] Patrick Dehornoy,et al. Gaussian Groups and Garside Groups, Two Generalisations of Artin Groups , 1999 .
[4] M. Yan,et al. On the set-theoretical Yang-Baxter equation , 2000 .
[5] W. Rump. Decomposition of Garside groups and self-similar L-algebras , 2017 .
[6] Eric Jespers,et al. Involutive Yang-Baxter groups , 2008, 0803.4054.
[7] L. Vendramin,et al. Hopf braces and Yang-Baxter operators , 2016, 1604.02098.
[8] Bert Wiest,et al. Nielsen-Thurston orders and the space of braid orderings , 2009 .
[9] D. Foulis,et al. Effect algebras and unsharp quantum logics , 1994 .
[10] Paul F. Conrad,et al. Lattice ordered groups , 1970 .
[11] M. Donald MacLaren. ATOMIC ORTHOCOMPLEMENTED LATTICES , 1964 .
[12] Garrett Birkhoff. Lattice-Ordered Groups , 1942 .
[13] S. Holland. A Radon-Nikodym theorem in dimension lattices , 1963 .
[14] Andr'es Navas,et al. On the dynamics of (left) orderable groups , 2007, 0710.2466.
[15] Patrick Dehornoy. Groupes de Garside , 2001 .
[16] D. Mundici. Interpretation of AF -algebras in ukasiewicz sentential calculus , 1986 .
[17] D. Bachiller,et al. Solutions of the Yang-Baxter equation associated with a left brace , 2015, 1503.02814.
[18] L. H. Loomis,et al. The lattice theoretic background of the dimension theory of operator algebras , 1955 .
[19] Alain Connes,et al. A Factor Not Anti-Isomorphic to Itself , 1975 .
[20] Semigroups of I-type , 2003, math/0308071.
[21] F. Cedó,et al. Retractability of set theoretic solutions of the Yang-Baxter equation , 2009, 0903.3478.
[22] Irving Kaplansky,et al. Any Orthocomplemented Complete Modular Lattice is a Continuous Geometry , 1955 .
[23] David Bessis. The dual braid monoid , 2001 .
[24] A. Connes. A Factor not Anti-Imsomorphic to itself , 1975 .
[25] V. Drinfeld. On some unsolved problems in quantum group theory , 1992 .
[26] Bruno Bosbach. Rechtskomplementäre Halbgruppen. Axiome, Polynome, Kongruenzen , 1972 .
[27] Matthieu Picantin,et al. The Center of Thin Gaussian Groups , 2001 .
[28] Zdenka Riecanová,et al. Topological and order-topological orthomodular lattices , 1992, Bulletin of the Australian Mathematical Society.
[29] W. Rump. L-algebras, self-similarity, and l-groups , 2008 .
[30] I. Chajda,et al. A Note on Orthomodular Lattices , 2017 .
[31] A. Dvurecenskij. Pseudo MV-algebras are intervals in ℓ-groups , 2002, Journal of the Australian Mathematical Society.
[32] F. Cedó,et al. Braces and the Yang–Baxter Equation , 2012, 1205.3587.
[33] Wolfgang Rump. The structure group of an L-algebra is torsion-free , 2016 .
[34] V. M. Kopytov,et al. Right-ordered groups , 1996 .
[35] C. Rourke,et al. Order automatic mapping class groups , 2000 .
[36] Finite quotients of groups of I-type , 2013, 1301.3707.
[37] Bert Wiest,et al. Orderings of mapping class groups after Thurston , 1999 .
[38] H. Dishkant,et al. Logic of Quantum Mechanics , 1976 .
[39] Wolfgang Rump,et al. A decomposition theorem for square-free unitary solutions of the quantum Yang-Baxter equation , 2005 .
[40] A class of garside groupoid structures on the pure braid group , 2005, math/0509165.
[41] S. Boyer,et al. On L-spaces and left-orderable fundamental groups , 2011, 1107.5016.
[42] G. Nöbeling. Verallgemeinerung eines Satzes von Herrn E. Specker , 1968 .
[43] Wolfgang Rump,et al. Right l-groups, geometric Garside groups, and solutions of the quantum Yang–Baxter equation , 2015 .
[44] Fabienne Chouraqui,et al. Garside Groups and Yang–Baxter Equation , 2009, 0912.4827.
[45] V. Lebed,et al. Cohomology and extensions of braces , 2016, 1601.01633.
[46] Mirko Navara. An orthomodular lattice admitting no group-valued measure , 1994 .
[47] Zdenka Riečanová,et al. Sharp Elements in Effect Algebras , 2001 .
[48] C. Chang,et al. Algebraic analysis of many valued logics , 1958 .
[49] F. A. Garside,et al. THE BRAID GROUP AND OTHER GROUPS , 1969 .
[50] L. Bunce,et al. The Mackey‐Gleason Problem for Vector Measures on Projections in Von Neumann Algebras , 1994 .
[51] M. F. Janowitz. On the antitone mappings of a poset , 1964 .
[52] H. Dye. On the Geometry of Projections in Certain Operator Algebras , 1955 .
[53] Usa Sasaki. Orthocomplemented Lattices Satisfying the Exchange Axiom , 1954 .
[54] Dale Rolfsen,et al. Orderable 3-manifold groups , 2006 .
[55] Wolfgang Rump,et al. Braces, radical rings, and the quantum Yang–Baxter equation , 2007 .
[56] Richard J. Greechie,et al. Orthomodular Lattices Admitting No States , 1971 .
[57] Patrick Dehornoy,et al. Groups with a complemented presentation , 1997 .
[58] David J. Foulis,et al. Conditions for the modularity of an orthomodular lattice. , 1961 .
[59] Travis Schedler,et al. On set-theoretical solutions of the quantum Yang-Baxter equation , 1997 .
[60] DIMENSION THEORY IN COMPLETE ORTHOCOMPLEMENTED WEAKLY MODULAR LATTICES , 1965 .
[61] Paul Conrad,et al. Right-ordered groups. , 1959 .
[62] P. Deligne,et al. Les immeubles des groupes de tresses généralisés , 1972 .
[63] Wolfgang Rump. SEMIDIRECT PRODUCTS IN ALGEBRAIC LOGIC AND SOLUTIONS OF THE QUANTUM YANG–BAXTER EQUATION , 2008 .
[64] J. Wright,et al. The Mackey-Gleason Problem , 1992, math/9204228.
[65] Egbert Brieskorn,et al. Artin-Gruppen und Coxeter-Gruppen , 1972 .
[66] D. Foulis. Semigroups Co-Ordinatizing Orthomodular Geometries , 1965, Canadian Journal of Mathematics.
[67] Robert Piziak,et al. Implication connectives in orthomodular lattices , 1975, Notre Dame J. Formal Log..
[68] Frederic W. Shultz,et al. A Characterization of State Spaces of Orthomodular Lattices , 1974, J. Comb. Theory A.
[69] H. Short,et al. The Band-Sum Problem , 1985 .
[70] S. Holland. Distributivity and perspectivity in orthomodular lattices , 1964 .