Von Neumann algebras, L-algebras, Baer *-monoids, and Garside groups

<jats:p>It is shown that the projection lattice of a von Neumann algebra, or more generally every orthomodular lattice<jats:italic>X</jats:italic>, admits a natural embedding into a group<jats:inline-formula id="j_forum-2017-0108_ineq_9999"><jats:alternatives><jats:inline-graphic xlink:href="graphic/j_forum-2017-0108_eq_0263.png" /><jats:tex-math>{G(X)}</jats:tex-math></jats:alternatives></jats:inline-formula>with a lattice ordering so that<jats:inline-formula id="j_forum-2017-0108_ineq_9998"><jats:alternatives><jats:inline-graphic xlink:href="graphic/j_forum-2017-0108_eq_0263.png" /><jats:tex-math>{G(X)}</jats:tex-math></jats:alternatives></jats:inline-formula>determines<jats:italic>X</jats:italic>up to isomorphism. The embedding<jats:inline-formula id="j_forum-2017-0108_ineq_9997"><jats:alternatives><jats:inline-graphic xlink:href="graphic/j_forum-2017-0108_eq_0311.png" /><jats:tex-math>{X\hookrightarrow G(X)}</jats:tex-math></jats:alternatives></jats:inline-formula>appears to be a universal (non-commutative) group-valued measure on<jats:italic>X</jats:italic>, while states of<jats:italic>X</jats:italic>turn into real-valued group homomorphisms on<jats:inline-formula id="j_forum-2017-0108_ineq_9996"><jats:alternatives><jats:inline-graphic xlink:href="graphic/j_forum-2017-0108_eq_0263.png" /><jats:tex-math>{G(X)}</jats:tex-math></jats:alternatives></jats:inline-formula>. The existence of completions is characterized by a generalized archimedean property which simultaneously applies to<jats:italic>X</jats:italic>and<jats:inline-formula id="j_forum-2017-0108_ineq_9995"><jats:alternatives><jats:inline-graphic xlink:href="graphic/j_forum-2017-0108_eq_0263.png" /><jats:tex-math>{G(X)}</jats:tex-math></jats:alternatives></jats:inline-formula>. By an extension of Foulis’ coordinatization theorem, the negative cone of<jats:inline-formula id="j_forum-2017-0108_ineq_9994"><jats:alternatives><jats:inline-graphic xlink:href="graphic/j_forum-2017-0108_eq_0263.png" /><jats:tex-math>{G(X)}</jats:tex-math></jats:alternatives></jats:inline-formula>is shown to be the initial object among generalized Baer<jats:inline-formula id="j_forum-2017-0108_ineq_9993"><jats:alternatives><jats:inline-graphic xlink:href="graphic/j_forum-2017-0108_eq_0831.png" /><jats:tex-math>{{}^{\ast}}</jats:tex-math></jats:alternatives></jats:inline-formula>-semigroups. For finite<jats:italic>X</jats:italic>, the correspondence between<jats:italic>X</jats:italic>and<jats:inline-formula id="j_forum-2017-0108_ineq_9992"><jats:alternatives><jats:inline-graphic xlink:href="graphic/j_forum-2017-0108_eq_0263.png" /><jats:tex-math>{G(X)}</jats:tex-math></jats:alternatives></jats:inline-formula>provides a new class of Garside groups.</jats:p>

[1]  Wolfgang Rump,et al.  Multi-posets in algebraic logic, group theory, and non-commutative topology , 2016, Ann. Pure Appl. Log..

[2]  T. Gateva-Ivanova,et al.  Semigroups ofI-Type , 1998 .

[3]  Patrick Dehornoy,et al.  Gaussian Groups and Garside Groups, Two Generalisations of Artin Groups , 1999 .

[4]  M. Yan,et al.  On the set-theoretical Yang-Baxter equation , 2000 .

[5]  W. Rump Decomposition of Garside groups and self-similar L-algebras , 2017 .

[6]  Eric Jespers,et al.  Involutive Yang-Baxter groups , 2008, 0803.4054.

[7]  L. Vendramin,et al.  Hopf braces and Yang-Baxter operators , 2016, 1604.02098.

[8]  Bert Wiest,et al.  Nielsen-Thurston orders and the space of braid orderings , 2009 .

[9]  D. Foulis,et al.  Effect algebras and unsharp quantum logics , 1994 .

[10]  Paul F. Conrad,et al.  Lattice ordered groups , 1970 .

[11]  M. Donald MacLaren ATOMIC ORTHOCOMPLEMENTED LATTICES , 1964 .

[12]  Garrett Birkhoff Lattice-Ordered Groups , 1942 .

[13]  S. Holland A Radon-Nikodym theorem in dimension lattices , 1963 .

[14]  Andr'es Navas,et al.  On the dynamics of (left) orderable groups , 2007, 0710.2466.

[15]  Patrick Dehornoy Groupes de Garside , 2001 .

[16]  D. Mundici Interpretation of AF -algebras in ukasiewicz sentential calculus , 1986 .

[17]  D. Bachiller,et al.  Solutions of the Yang-Baxter equation associated with a left brace , 2015, 1503.02814.

[18]  L. H. Loomis,et al.  The lattice theoretic background of the dimension theory of operator algebras , 1955 .

[19]  Alain Connes,et al.  A Factor Not Anti-Isomorphic to Itself , 1975 .

[20]  Semigroups of I-type , 2003, math/0308071.

[21]  F. Cedó,et al.  Retractability of set theoretic solutions of the Yang-Baxter equation , 2009, 0903.3478.

[22]  Irving Kaplansky,et al.  Any Orthocomplemented Complete Modular Lattice is a Continuous Geometry , 1955 .

[23]  David Bessis The dual braid monoid , 2001 .

[24]  A. Connes A Factor not Anti-Imsomorphic to itself , 1975 .

[25]  V. Drinfeld On some unsolved problems in quantum group theory , 1992 .

[26]  Bruno Bosbach Rechtskomplementäre Halbgruppen. Axiome, Polynome, Kongruenzen , 1972 .

[27]  Matthieu Picantin,et al.  The Center of Thin Gaussian Groups , 2001 .

[28]  Zdenka Riecanová,et al.  Topological and order-topological orthomodular lattices , 1992, Bulletin of the Australian Mathematical Society.

[29]  W. Rump L-algebras, self-similarity, and l-groups , 2008 .

[30]  I. Chajda,et al.  A Note on Orthomodular Lattices , 2017 .

[31]  A. Dvurecenskij Pseudo MV-algebras are intervals in ℓ-groups , 2002, Journal of the Australian Mathematical Society.

[32]  F. Cedó,et al.  Braces and the Yang–Baxter Equation , 2012, 1205.3587.

[33]  Wolfgang Rump The structure group of an L-algebra is torsion-free , 2016 .

[34]  V. M. Kopytov,et al.  Right-ordered groups , 1996 .

[35]  C. Rourke,et al.  Order automatic mapping class groups , 2000 .

[36]  Finite quotients of groups of I-type , 2013, 1301.3707.

[37]  Bert Wiest,et al.  Orderings of mapping class groups after Thurston , 1999 .

[38]  H. Dishkant,et al.  Logic of Quantum Mechanics , 1976 .

[39]  Wolfgang Rump,et al.  A decomposition theorem for square-free unitary solutions of the quantum Yang-Baxter equation , 2005 .

[40]  A class of garside groupoid structures on the pure braid group , 2005, math/0509165.

[41]  S. Boyer,et al.  On L-spaces and left-orderable fundamental groups , 2011, 1107.5016.

[42]  G. Nöbeling Verallgemeinerung eines Satzes von Herrn E. Specker , 1968 .

[43]  Wolfgang Rump,et al.  Right l-groups, geometric Garside groups, and solutions of the quantum Yang–Baxter equation , 2015 .

[44]  Fabienne Chouraqui,et al.  Garside Groups and Yang–Baxter Equation , 2009, 0912.4827.

[45]  V. Lebed,et al.  Cohomology and extensions of braces , 2016, 1601.01633.

[46]  Mirko Navara An orthomodular lattice admitting no group-valued measure , 1994 .

[47]  Zdenka Riečanová,et al.  Sharp Elements in Effect Algebras , 2001 .

[48]  C. Chang,et al.  Algebraic analysis of many valued logics , 1958 .

[49]  F. A. Garside,et al.  THE BRAID GROUP AND OTHER GROUPS , 1969 .

[50]  L. Bunce,et al.  The Mackey‐Gleason Problem for Vector Measures on Projections in Von Neumann Algebras , 1994 .

[51]  M. F. Janowitz On the antitone mappings of a poset , 1964 .

[52]  H. Dye On the Geometry of Projections in Certain Operator Algebras , 1955 .

[53]  Usa Sasaki Orthocomplemented Lattices Satisfying the Exchange Axiom , 1954 .

[54]  Dale Rolfsen,et al.  Orderable 3-manifold groups , 2006 .

[55]  Wolfgang Rump,et al.  Braces, radical rings, and the quantum Yang–Baxter equation , 2007 .

[56]  Richard J. Greechie,et al.  Orthomodular Lattices Admitting No States , 1971 .

[57]  Patrick Dehornoy,et al.  Groups with a complemented presentation , 1997 .

[58]  David J. Foulis,et al.  Conditions for the modularity of an orthomodular lattice. , 1961 .

[59]  Travis Schedler,et al.  On set-theoretical solutions of the quantum Yang-Baxter equation , 1997 .

[60]  DIMENSION THEORY IN COMPLETE ORTHOCOMPLEMENTED WEAKLY MODULAR LATTICES , 1965 .

[61]  Paul Conrad,et al.  Right-ordered groups. , 1959 .

[62]  P. Deligne,et al.  Les immeubles des groupes de tresses généralisés , 1972 .

[63]  Wolfgang Rump SEMIDIRECT PRODUCTS IN ALGEBRAIC LOGIC AND SOLUTIONS OF THE QUANTUM YANG–BAXTER EQUATION , 2008 .

[64]  J. Wright,et al.  The Mackey-Gleason Problem , 1992, math/9204228.

[65]  Egbert Brieskorn,et al.  Artin-Gruppen und Coxeter-Gruppen , 1972 .

[66]  D. Foulis Semigroups Co-Ordinatizing Orthomodular Geometries , 1965, Canadian Journal of Mathematics.

[67]  Robert Piziak,et al.  Implication connectives in orthomodular lattices , 1975, Notre Dame J. Formal Log..

[68]  Frederic W. Shultz,et al.  A Characterization of State Spaces of Orthomodular Lattices , 1974, J. Comb. Theory A.

[69]  H. Short,et al.  The Band-Sum Problem , 1985 .

[70]  S. Holland Distributivity and perspectivity in orthomodular lattices , 1964 .