Differential distribution of β and θ EEG activity in the entorhinal cortex of the cat

[1]  A. Alonso,et al.  A study of the reciprocal connections between the septum and the entorhinal area using anterograde and retrograde axonal transport methods in the rat brain , 1984, The Journal of comparative neurology.

[2]  W. Freeman,et al.  Frequency analysis of olfactory system EEG in cat, rabbit, and rat. , 1980, Electroencephalography and clinical neurophysiology.

[3]  D. G. Watts,et al.  Spectral analysis and its applications , 1968 .

[4]  W. Freeman Spatial properties of an EEG event in the olfactory bulb and cortex. , 1978, Electroencephalography and clinical neurophysiology.

[5]  W. R. Adey,et al.  Electrical activity of the entorhinal cortex during conditioned behavior. , 1960, The American journal of physiology.

[6]  M P Witter,et al.  The organization of the reciprocal connections between the subiculum and the entorhinal cortex in the cat: I. A neuroanatomical tracing study , 1986, The Journal of comparative neurology.

[7]  J. B. Ranck,et al.  Generation of theta rhythm in medial entorhinal cortex of freely moving rats , 1980, Brain Research.

[8]  J. Price,et al.  Projections from the amygdaloid complex and adjacent olfactory structures to the entorhinal cortex and to the subiculum in the rat and cat , 1977, The Journal of comparative neurology.

[9]  F. L. D. Silva,et al.  Organization of the reciprocal connections between the subiculum and the enthorhinal cortex in the cat: II. An electrophysiological study , 1986, The Journal of comparative neurology.

[10]  D. K. Cheng,et al.  Analysis of linear systems , 1960 .

[11]  F. H. Lopes da Silva,et al.  Physiology of the hippocampus and related structures. , 1978, Annual review of physiology.

[12]  F. L. D. Silva,et al.  Septotemporal distribution of entorhinal projections to the hippocampus in the cat: Electrophysiological evidence , 1985, The Journal of comparative neurology.

[13]  H. Groenewegen,et al.  Connections of the parahippocampal cortex in the cat. II. Subcortical afferents , 1986, The Journal of comparative neurology.

[14]  L. Haberly Neuronal circuitry in olfactory cortex: anatomy and functional implications , 1985 .

[15]  M. Witter,et al.  Connections of the parahippocampal cortex in the cat. V. Intrinsic connections; comments on input/output connections with the hippocampus , 1986, The Journal of comparative neurology.

[16]  A. Routtenberg,et al.  Topography between the entorhinal cortex and the dentate septotemporal axis in rats: I. Medial and intermediate entorhinal projecting cells , 1982, The Journal of comparative neurology.

[17]  F. L. D. Silva,et al.  Hippocampal EEG and motor activity in the cat: The role of eye movements and body acceleration , 1984, Behavioural Brain Research.

[18]  D. Kerr,et al.  Collateral projection of the lateral olfactory tract to entorhinal cortical areas in the cat. , 1972, Brain research.

[19]  D. Pandya,et al.  Some cortical projections to the parahippocampal area in the rhesus monkey , 1976, Experimental Neurology.

[20]  H Eichenbaum,et al.  Afferent connections of the perirhinal cortex in the rat , 1983, The Journal of comparative neurology.

[21]  C. H. Vanderwolf,et al.  Pathways through cingulate, neo-and entorhinal cortices mediate atropine-resistant hippocampal rhythmical slow activity , 1985, Brain Research.

[22]  M P Witter,et al.  Laminar origin and septotemporal distribution of entorhinal and perirhinal projections to the hippocampus in the cat , 1984, The Journal of comparative neurology.

[23]  Ray S. Snider,et al.  A stereotaxic atlas of the cat brain , 1987 .

[24]  C. H. Vanderwolf,et al.  Hippocampal Rhythmic Slow Activity and Neocortical Low-Voltage Fast Activity: Relations to Behavior , 1975 .

[25]  H. Groenewegen,et al.  Connections of the parahippocampal cortex. I. Cortical afferents , 1986, The Journal of comparative neurology.

[26]  F. Harris On the use of windows for harmonic analysis with the discrete Fourier transform , 1978, Proceedings of the IEEE.

[27]  Deepak N. Pandya,et al.  Some connections of the entorhinal (area 28) and perirhinal (area 35) cortices of the rhesus monkey. II. Frontal lobe afferents , 1975, Brain Research.

[28]  G. V. Van Hoesen,et al.  Olfactory bulb projections to the parahippocampal area of the rat , 1981, The Journal of comparative neurology.

[29]  Association projections from the secondary somatosensory cortex in the cat. , 1982, Acta anatomica.

[30]  Theta rhythm related hippocampal cell discharges in the urethane anaesthetized rat: evidence for a predominant entorhinal input. , 1983, Electroencephalography and clinical neurophysiology.

[31]  E. Adrian,et al.  The electrical activity of the mammalian olfactory bulb. , 1950, Electroencephalography and clinical neurophysiology.

[32]  Walter J. Freeman,et al.  Spectral analysis of electrical activity in the prepyriform cortex of the cat , 1963 .

[33]  R. Moddemeijer On estimation of entropy and mutual information of continuous distributions , 1989 .

[34]  Jonathan Winson,et al.  Hippocampal theta rhythm. II. Depth profiles in the freely moving rabbit , 1976, Brain Research.

[35]  S L Bressler,et al.  Spatial organization of EEGs from olfactory bulb and cortex. , 1984, Electroencephalography and clinical neurophysiology.

[36]  G. Bonin,et al.  The neocortex of Macaca mulatta , 1947 .

[37]  F. L. D. Silva,et al.  An olfactory input to the hippocampus of the cat: Field potential analysis , 1980, Brain Research.

[38]  J. Boudreau Computer Analysis of Electrical Activity in the Olfactory System of the Cat , 1964, Nature.

[39]  E Callaway,et al.  Coupling between Cortical Potentials from Different Areas , 1974, Science.

[40]  Donald O. Walter,et al.  Mass action in the nervous system , 1975 .