Diverse and Additive Cartesian Abstraction Heuristics

We have recently shown how counterexample-guided abstraction refinement can be used to derive informative Cartesian abstraction heuristics for optimal classical planning. In this work we introduce two methods for producing diverse sets of heuristics within this framework, one based on goal facts, the other based on landmarks. In order to sum the heuristic estimates admissibly we present a novel way of finding cost partitionings for explicitly represented abstraction heuristics. We show that the resulting heuristics outperform other state-of-the-art abstraction heuristics on many benchmark domains.

[1]  Carmel Domshlak,et al.  Optimal Additive Composition of Abstraction-based Admissible Heuristics , 2008, ICAPS.

[2]  Erez Karpas,et al.  Sensible Agent Technology Improving Coordination and Communication in Biosurveillance Domains , 2009, IJCAI.

[3]  Fan Yang,et al.  A General Theory of Additive State Space Abstractions , 2008, J. Artif. Intell. Res..

[4]  David Furcy,et al.  Maximizing over multiple pattern databases speeds up heuristic search , 2006, Artif. Intell..

[5]  Robert C. Holte,et al.  Experiments with Automatically Created Memory-Based Heuristics , 2000, SARA.

[6]  Jendrik Seipp,et al.  Counterexample-Guided Cartesian Abstraction Refinement , 2013, ICAPS.

[7]  Malte Helmert,et al.  Landmarks Revisited , 2008, AAAI.

[8]  Stephen Cresswell,et al.  Extending landmarks analysis to reason about resources and repetition , 2002 .

[9]  Malte Helmert,et al.  Efficient Implementation of Pattern Database Heuristics for Classical Planning , 2021, SOCS.

[10]  Patrik Haslum,et al.  Domain-Independent Construction of Pattern Database Heuristics for Cost-Optimal Planning , 2007, AAAI.

[11]  Jörg Hoffmann,et al.  Computing Perfect Heuristics in Polynomial Time: On Bisimulation and Merge-and-Shrink Abstraction in Optimal Planning , 2011, IJCAI.

[12]  Bernhard Nebel,et al.  COMPLEXITY RESULTS FOR SAS+ PLANNING , 1995, Comput. Intell..

[13]  Malte Helmert,et al.  Getting the Most Out of Pattern Databases for Classical Planning , 2013, IJCAI.

[14]  Jörg Hoffmann,et al.  Ordered Landmarks in Planning , 2004, J. Artif. Intell. Res..

[15]  Edmund M. Clarke,et al.  Counterexample-guided abstraction refinement , 2003, 10th International Symposium on Temporal Representation and Reasoning, 2003 and Fourth International Conference on Temporal Logic. Proceedings..

[16]  Blai Bonet,et al.  Planning as heuristic search , 2001, Artif. Intell..

[17]  Malte Helmert,et al.  Sound and Complete Landmarks for And/Or Graphs , 2010, ECAI.