THE SINGULAR DYNAMIC METHOD FOR DYNAMIC CONTACT OF THIN ELASTIC STRUCTURES
暂无分享,去创建一个
[1] J. U. Kim,et al. A boundary thin obstacle problem for a wave equation , 1989 .
[2] Laetitia Paoli,et al. Time discretization of vibro‐impact , 2001, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.
[4] Yves Renard,et al. The singular dynamic method for constrained second order hyperbolic equations: Application to dynamic contact problems , 2010, J. Comput. Appl. Math..
[5] Houari Boumediène Khenous. Problèmes de contact unilatéral avec frottement de Coulomb en élastostatique et élastodynamique. Etude mathématique et résolution numérique. , 2005 .
[6] J. Moreau. Numerical aspects of the sweeping process , 1999 .
[7] Robert L. Taylor,et al. On a finite element method for dynamic contact/impact problems , 1993 .
[8] P. Tallec,et al. Energy-controlling time integration methods for nonlinear elastodynamics and low-velocity impact , 2006 .
[9] Peter Deuflhard,et al. A contact‐stabilized Newmark method for dynamical contact problems , 2008 .
[10] R. Taylor,et al. Lagrange constraints for transient finite element surface contact , 1991 .
[11] J. Moreau. Liaisons unilatérales sans frottement et chocs inélastiques , 1983 .
[12] T. Laursen,et al. DESIGN OF ENERGY CONSERVING ALGORITHMS FOR FRICTIONLESS DYNAMIC CONTACT PROBLEMS , 1997 .
[13] Yves Renard,et al. Hybrid discretization of the Signorini problem with Coulomb friction. Theoretical aspects and comparison of some numerical solvers , 2006 .
[14] P. Alart,et al. A mixed formulation for frictional contact problems prone to Newton like solution methods , 1991 .
[15] T. Laursen,et al. Improved implicit integrators for transient impact problems—geometric admissibility within the conserving framework , 2002, International Journal for Numerical Methods in Engineering.
[16] L. Paoli,et al. Approximation et existence en vibro-impact , 1999 .
[17] M. Bischoff,et al. Hybrid‐mixed discretization of elasto‐dynamic contact problems using consistent singular mass matrices , 2013 .
[18] Philippe G. Ciarlet,et al. The finite element method for elliptic problems , 2002, Classics in applied mathematics.
[19] Laetitia Paoli,et al. VIBRATIONS OF A BEAM BETWEEN OBSTACLES. CONVERGENCE OF A FULLY DISCRETIZED APPROXIMATION , 2006 .
[20] A. Curnier,et al. A finite element method for a class of contact-impact problems , 1976 .
[21] K. Deimling. Multivalued Differential Equations , 1992 .
[22] Patrick Laborde,et al. Mass redistribution method for finite element contact problems in elastodynamics , 2008 .
[23] Thomas J. R. Hughes,et al. A reduction scheme for problems of structural dynamics , 1976 .
[24] Michelle Schatzman,et al. A wave problem in a half-space with a unilateral constraint at the boundary , 1984 .