PHAB toxins: a unique family of predatory sea anemone toxins evolving via intra-gene concerted evolution defines a new peptide fold

[1]  R. Norton,et al.  The use of imaging mass spectrometry to study peptide toxin distribution in Australian sea anemones , 2017 .

[2]  G. King,et al.  Revisiting venom of the sea anemone Stichodactyla haddoni: Omics techniques reveal the complete toxin arsenal of a well-studied sea anemone genus. , 2017, Journal of proteomics.

[3]  D. Craik,et al.  Redesigned Spider Peptide with Improved Antimicrobial and Anticancer Properties. , 2017, ACS chemical biology.

[4]  I. Vetter,et al.  Modulatory features of the novel spider toxin μ‐TRTX‐Df1a isolated from the venom of the spider Davus fasciatus , 2017, British journal of pharmacology.

[5]  E. Muñoz-Elías,et al.  Safety and pharmacodynamics of dalazatide, a Kv1.3 channel inhibitor, in the treatment of plaque psoriasis: A randomized phase 1b trial , 2017, PloS one.

[6]  A. Lemmon,et al.  Selection To Increase Expression, Not Sequence Diversity, Precedes Gene Family Origin and Expansion in Rattlesnake Venom , 2017, Genetics.

[7]  V. Ivanov,et al.  A Therapeutic Potential of Animal β-hairpin Antimicrobial Peptides. , 2017, Current medicinal chemistry.

[8]  K. Mineev,et al.  New Disulfide-Stabilized Fold Provides Sea Anemone Peptide to Exhibit Both Antimicrobial and TRPA1 Potentiating Properties , 2017, Toxins.

[9]  Thomas K. F. Wong,et al.  ModelFinder: Fast Model Selection for Accurate Phylogenetic Estimates , 2017, Nature Methods.

[10]  Erich Bornberg-Bauer,et al.  Evolution of Protein Domain Repeats in Metazoa , 2016, Molecular biology and evolution.

[11]  G. King,et al.  Toxin structures as evolutionary tools: Using conserved 3D folds to study the evolution of rapidly evolving peptides , 2016, BioEssays : news and reviews in molecular, cellular and developmental biology.

[12]  Matthew A. Cooper,et al.  Contribution of Amphipathicity and Hydrophobicity to the Antimicrobial Activity and Cytotoxicity of β-Hairpin Peptides , 2016, ACS infectious diseases.

[13]  K. Sunagar,et al.  The Rise and Fall of an Evolutionary Innovation: Contrasting Strategies of Venom Evolution in Ancient and Young Animals , 2015, PLoS genetics.

[14]  V. Yarov-Yarovoy,et al.  A pain-inducing centipede toxin targets the heat activation machinery of nociceptor TRPV1 , 2015, Nature Communications.

[15]  S. Kozlov,et al.  Structural features of cysteine-rich polypeptides from sea anemone venoms , 2015, Russian Journal of Bioorganic Chemistry.

[16]  T. Nevalainen,et al.  Ancient Venom Systems: A Review on Cnidaria Toxins , 2015, Toxins.

[17]  J. Macrander,et al.  A RNA-seq approach to identify putative toxins from acrorhagi in aggressive and non-aggressive Anthopleura elegantissima polyps , 2015, BMC Genomics.

[18]  N. Kurniawan,et al.  Production and packaging of a biological arsenal: Evolution of centipede venoms under morphological constraint , 2015, Proceedings of the National Academy of Sciences.

[19]  A. von Haeseler,et al.  IQ-TREE: A Fast and Effective Stochastic Algorithm for Estimating Maximum-Likelihood Phylogenies , 2014, Molecular biology and evolution.

[20]  A. C. Marques,et al.  Origin and early diversification of the phylum Cnidaria Verrill: major developments in the analysis of the taxon's Proterozoic–Cambrian history , 2014 .

[21]  Mehdi Mobli,et al.  A distinct sodium channel voltage-sensor locus determines insect selectivity of the spider toxin Dc1a , 2014, Nature Communications.

[22]  A. Grajales,et al.  Hidden among Sea Anemones: The First Comprehensive Phylogenetic Reconstruction of the Order Actiniaria (Cnidaria, Anthozoa, Hexacorallia) Reveals a Novel Group of Hexacorals , 2014, PloS one.

[23]  K. Sunagar,et al.  Multifunctional warheads: diversification of the toxin arsenal of centipedes via novel multidomain transcripts. , 2014, Journal of proteomics.

[24]  E. Pauw,et al.  BcsTx3 is a founder of a novel sea anemone toxin family of potassium channel blocker , 2013, The FEBS journal.

[25]  Leighton Pritchard,et al.  Galaxy tools and workflows for sequence analysis with applications in molecular plant pathology , 2013, PeerJ.

[26]  E. Grishin,et al.  Sea Anemone Peptide with Uncommon β-Hairpin Structure Inhibits Acid-sensing Ion Channel 3 (ASIC3) and Reveals Analgesic Activity* , 2013, The Journal of Biological Chemistry.

[27]  A. Bax,et al.  Protein backbone and sidechain torsion angles predicted from NMR chemical shifts using artificial neural networks , 2013, Journal of Biomolecular NMR.

[28]  Nicholas R Casewell,et al.  Complex cocktails: the evolutionary novelty of venoms. , 2013, Trends in ecology & evolution.

[29]  D. Craik,et al.  Design and characterization of novel antimicrobial peptides, R-BP100 and RW-BP100, with activity against Gram-negative and Gram-positive bacteria. , 2013, Biochimica et biophysica acta.

[30]  Minh Anh Nguyen,et al.  Ultrafast Approximation for Phylogenetic Bootstrap , 2013, Molecular biology and evolution.

[31]  K. Katoh,et al.  MAFFT Multiple Sequence Alignment Software Version 7: Improvements in Performance and Usability , 2013, Molecular biology and evolution.

[32]  D. Craik,et al.  Phosphatidylethanolamine Binding Is a Conserved Feature of Cyclotide-Membrane Interactions* , 2012, The Journal of Biological Chemistry.

[33]  A. Antunes,et al.  Sea Anemone (Cnidaria, Anthozoa, Actiniaria) Toxins: An Overview , 2012, Marine drugs.

[34]  S. Özbek,et al.  The nematocyst: a molecular map of the cnidarian stinging organelle. , 2012, The International journal of developmental biology.

[35]  S. Özbek,et al.  Neurotoxin localization to ectodermal gland cells uncovers an alternative mechanism of venom delivery in sea anemones , 2012, Proceedings of the Royal Society B: Biological Sciences.

[36]  Jennifer J. Smith,et al.  Unique scorpion toxin with a putative ancestral fold provides insight into evolution of the inhibitor cystine knot motif , 2011, Proceedings of the National Academy of Sciences.

[37]  D. Craik,et al.  Decoding the Membrane Activity of the Cyclotide Kalata B1 , 2011, The Journal of Biological Chemistry.

[38]  D. Craik,et al.  Lysine-scanning Mutagenesis Reveals an Amendable Face of the Cyclotide Kalata B1 for the Optimization of Nematocidal Activity* , 2010, The Journal of Biological Chemistry.

[39]  Ning Ma,et al.  BLAST+: architecture and applications , 2009, BMC Bioinformatics.

[40]  R. Norton,et al.  The toxicogenomic multiverse: convergent recruitment of proteins into animal venoms. , 2009, Annual review of genomics and human genetics.

[41]  M. Aguilar,et al.  PrP(106-126) does not interact with membranes under physiological conditions. , 2008, Biophysical journal.

[42]  J. Finnerty,et al.  Concerted evolution of sea anemone neurotoxin genes is revealed through analysis of the Nematostella vectensis genome. , 2008, Molecular biology and evolution.

[43]  Jack Snoeyink,et al.  MolProbity: all-atom contacts and structure validation for proteins and nucleic acids , 2007, Nucleic Acids Res..

[44]  K. Konno,et al.  BcIV, a new paralyzing peptide obtained from the venom of the sea anemone Bunodosoma caissarum. A comparison with the Na+ channel toxin BcIII. , 2006, Biochimica et biophysica acta.

[45]  G. King,et al.  Domain architecture and structure of the bacterial cell division protein DivIB. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[46]  A. Otero,et al.  Immunohistochemical targeting of sea anemone cytolysins on tentacles, mesenteric filaments and isolated nematocysts of Stichodactyla helianthus. , 2006, Journal of experimental zoology. Part A, Comparative experimental biology.

[47]  Shinichi Iwamoto,et al.  Rapid sequencing and disulfide mapping of peptides containing disulfide bonds by using 1,5-diaminonaphthalene as a reductive matrix. , 2006, Journal of mass spectrometry : JMS.

[48]  Henry A. Lester,et al.  Cis–trans isomerization at a proline opens the pore of a neurotransmitter-gated ion channel , 2005, Nature.

[49]  Wayne Boucher,et al.  The CCPN data model for NMR spectroscopy: Development of a software pipeline , 2005, Proteins.

[50]  Jan Tytgat,et al.  An unusual fold for potassium channel blockers: NMR structure of three toxins from the scorpion Opisthacanthus madagascariensis. , 2005, The Biochemical journal.

[51]  Jinsam You,et al.  A simplified procedure for the reduction and alkylation of cysteine residues in proteins prior to proteolytic digestion and mass spectral analysis. , 2004, Analytical biochemistry.

[52]  B. Hille,et al.  Ionic channels of excitable membranes , 2001 .

[53]  J. Tytgat,et al.  The α-Dendrotoxin Footprint on a Mammalian Potassium Channel (*) , 1995, The Journal of Biological Chemistry.

[54]  K. Muramoto,et al.  Characterization of peptides in sea anemone venom collected by a novel procedure. , 1993, Toxicon : official journal of the International Society on Toxinology.

[55]  A. Koukouras,et al.  The feeding habits of three Mediterranean sea anemone species,Anemonia viridis (Forskål),Actinia equina (Linnaeus) andCereus pedunculatus (Pennant) , 1992, Helgoländer Meeresuntersuchungen.

[56]  P. C. Wensink,et al.  A comparison of the ribosomal DNA's of Xenopus laevis and Xenopus mulleri: the evolution of tandem genes. , 1972, Journal of molecular biology.

[57]  G. King Venoms to Drugs: Venom as a Source for the Development of Human Therapeutics , 2015 .

[58]  A. Andreotti,et al.  Opening the pore hinges on proline , 2006, Nature chemical biology.

[59]  M. Ishida,et al.  Isolation and molecular cloning of novel peptide toxins from the sea anemone Antheopsis maculata. , 2005, Toxicon : official journal of the International Society on Toxinology.

[60]  P. Güntert Automated NMR structure calculation with CYANA. , 2004, Methods in molecular biology.

[61]  C. Griffiths,et al.  Sources of nutrition in intertidal sea anemones from the south-western Cape, South Africa , 1996 .

[62]  J. Ottaway Population Ecology of the Intertidal Anemone Actinia tenebrosa I. Pedal Locomotion and Intraspecific Aggression , 1978 .