Quantitative proteomics: challenges and opportunities in basic and applied research

[1]  M. Mann,et al.  Extensive quantitative remodeling of the proteome between normal colon tissue and adenocarcinoma , 2012, Molecular systems biology.

[2]  Hilla Peretz,et al.  Ju n 20 03 Schrödinger ’ s Cat : The rules of engagement , 2003 .

[3]  Oliver M. Bernhardt,et al.  Extending the Limits of Quantitative Proteome Profiling with Data-Independent Acquisition and Application to Acetaminophen-Treated Three-Dimensional Liver Microtissues* , 2015, Molecular & Cellular Proteomics.

[4]  Ruedi Aebersold,et al.  Options and considerations when selecting a quantitative proteomics strategy , 2010, Nature Biotechnology.

[5]  Gary D Bader,et al.  Too many roads not taken , 2011, Nature.

[6]  Lars Malmström,et al.  xTract: software for characterizing conformational changes of protein complexes by quantitative cross-linking mass spectrometry , 2015, Nature Methods.

[7]  A. Makarov,et al.  The Orbitrap: a new mass spectrometer. , 2005, Journal of mass spectrometry : JMS.

[8]  D. Goodlett,et al.  Shotgun collision‐induced dissociation of peptides using a time of flight mass analyzer , 2003, Proteomics.

[9]  Ruedi Aebersold,et al.  Estimation of Absolute Protein Quantities of Unlabeled Samples by Selected Reaction Monitoring Mass Spectrometry , 2011, Molecular & Cellular Proteomics.

[10]  Ruedi Aebersold,et al.  Quantitative variability of 342 plasma proteins in a human twin population , 2015 .

[11]  Alexander Schmidt,et al.  Critical assessment of proteome‐wide label‐free absolute abundance estimation strategies , 2013, Proteomics.

[12]  Ruedi Aebersold,et al.  Proteome-wide association studies identify biochemical modules associated with a wing-size phenotype in Drosophila melanogaster , 2016, Nature Communications.

[13]  L. Foster,et al.  A high-throughput approach for measuring temporal changes in the interactome , 2012, Nature Methods.

[14]  M. Bissell,et al.  Cancer genetics-guided discovery of serum biomarker signatures for diagnosis and prognosis of prostate cancer , 2012 .

[15]  Gary D Bader,et al.  The human genome and drug discovery after a decade. Roads (still) not taken , 2011, 1102.0448.

[16]  David L. Tabb,et al.  Reproducibility of Differential Proteomic Technologies in CPTAC Fractionated Xenografts , 2015, Journal of proteome research.

[17]  Chih-Chiang Tsou,et al.  DIA-Umpire: comprehensive computational framework for data-independent acquisition proteomics , 2015, Nature Methods.

[18]  D. Chelius,et al.  Quantitative profiling of proteins in complex mixtures using liquid chromatography and mass spectrometry. , 2002, Journal of proteome research.

[19]  Johannes P C Vissers,et al.  Using ion purity scores for enhancing quantitative accuracy and precision in complex proteomics samples , 2012, Analytical and Bioanalytical Chemistry.

[20]  Mathias Wilhelm,et al.  Global proteome analysis of the NCI-60 cell line panel. , 2013, Cell reports.

[21]  M. Mann,et al.  Stable Isotope Labeling by Amino Acids in Cell Culture, SILAC, as a Simple and Accurate Approach to Expression Proteomics* , 2002, Molecular & Cellular Proteomics.

[22]  Ruedi Aebersold,et al.  Lysine-specific chemical cross-linking of protein complexes and identification of cross-linking sites using LC-MS/MS and the xQuest/xProphet software pipeline , 2013, Nature Protocols.

[23]  Ronald J. Moore,et al.  Integrated Proteogenomic Characterization of Human High-Grade Serous Ovarian Cancer , 2016, Cell.

[24]  Malin M. Young,et al.  High throughput protein fold identification by using experimental constraints derived from intramolecular cross-links and mass spectrometry , 2000, Proc. Natl. Acad. Sci. USA.

[25]  Andrei L. Turinsky,et al.  A Census of Human Soluble Protein Complexes , 2012, Cell.

[26]  Ben C. Collins,et al.  A tool for the automated, targeted analysis of data-independent acquisition MS-data: OpenSWATH , 2014 .

[27]  Lars Malmström,et al.  aLFQ: an R-package for estimating absolute protein quantities from label-free LC-MS/MS proteomics data , 2014, Bioinform..

[28]  M. Mann,et al.  Comparative Proteomic Analysis of Eleven Common Cell Lines Reveals Ubiquitous but Varying Expression of Most Proteins* , 2012, Molecular & Cellular Proteomics.

[29]  Eric J Topol,et al.  Individualized Medicine from Prewomb to Tomb , 2014, Cell.

[30]  Andreas Quandt,et al.  An automated pipeline for high-throughput label-free quantitative proteomics. , 2013, Journal of proteome research.

[31]  D. Goodlett,et al.  Multiplexed and data-independent tandem mass spectrometry for global proteome profiling. , 2014, Mass spectrometry reviews.

[32]  Andrew H. Thompson,et al.  Tandem mass tags: a novel quantification strategy for comparative analysis of complex protein mixtures by MS/MS. , 2003, Analytical chemistry.

[33]  Lukas N. Mueller,et al.  Full Dynamic Range Proteome Analysis of S. cerevisiae by Targeted Proteomics , 2009, Cell.

[34]  K. Parker,et al.  Multiplexed Protein Quantitation in Saccharomyces cerevisiae Using Amine-reactive Isobaric Tagging Reagents*S , 2004, Molecular & Cellular Proteomics.

[35]  M. Gorenstein,et al.  Absolute Quantification of Proteins by LCMSE , 2006, Molecular & Cellular Proteomics.

[36]  Ruedi Aebersold,et al.  Absolute Proteome Composition and Dynamics during Dormancy and Resuscitation of Mycobacterium tuberculosis. , 2015, Cell host & microbe.

[37]  B. Alberts The Cell as a Collection of Protein Machines: Preparing the Next Generation of Molecular Biologists , 1998, Cell.

[38]  Birgit Schilling,et al.  Repeatability and reproducibility in proteomic identifications by liquid chromatography-tandem mass spectrometry. , 2010, Journal of proteome research.

[39]  Jian Wang,et al.  MSPLIT-DIA: sensitive peptide identification for data-independent acquisition , 2015, Nature Methods.

[40]  Steven A Carr,et al.  Protein biomarker discovery and validation: the long and uncertain path to clinical utility , 2006, Nature Biotechnology.

[41]  Evan G. Williams,et al.  Systems proteomics of liver mitochondria function , 2016, Science.

[42]  M. Mann,et al.  A generic strategy to analyze the spatial organization of multi-protein complexes by cross-linking and mass spectrometry. , 2000, Analytical chemistry.

[43]  Christoph H Borchers,et al.  Multi-site assessment of the precision and reproducibility of multiple reaction monitoring–based measurements of proteins in plasma , 2009, Nature Biotechnology.

[44]  R. Aebersold,et al.  Reproducible quantitative proteotype data matrices for systems biology , 2015, Molecular biology of the cell.

[45]  S. Gygi,et al.  Correlation between Protein and mRNA Abundance in Yeast , 1999, Molecular and Cellular Biology.

[46]  R. Aebersold,et al.  Mass spectrometry-based proteomics , 2003, Nature.

[47]  Brett Larsen,et al.  Multi-laboratory assessment of reproducibility, qualitative and quantitative performance of SWATH-mass spectrometry , 2016, bioRxiv.

[48]  Bernhard Kuster,et al.  Quantitative mass spectrometry in proteomics: critical review update from 2007 to the present , 2012, Analytical and Bioanalytical Chemistry.

[49]  B. Séraphin,et al.  A generic protein purification method for protein complex characterization and proteome exploration , 1999, Nature Biotechnology.

[50]  R. Aebersold,et al.  Non-invasive prognostic protein biomarker signatures associated with colorectal cancer , 2015, EMBO molecular medicine.

[51]  M. Mann,et al.  MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification , 2008, Nature Biotechnology.

[52]  Ludovic C. Gillet,et al.  Mass Spectrometry Applied to Bottom-Up Proteomics: Entering the High-Throughput Era for Hypothesis Testing. , 2016, Annual review of analytical chemistry.

[53]  Ludovic C. Gillet,et al.  Targeted Data Extraction of the MS/MS Spectra Generated by Data-independent Acquisition: A New Concept for Consistent and Accurate Proteome Analysis* , 2012, Molecular & Cellular Proteomics.

[54]  Pei Wang,et al.  A targeted proteomics–based pipeline for verification of biomarkers in plasma , 2011, Nature Biotechnology.

[55]  John D. Venable,et al.  Automated approach for quantitative analysis of complex peptide mixtures from tandem mass spectra , 2004, Nature Methods.

[56]  E. W. McDaniel,et al.  Electrospray Ion Source. Another Variation on the Free-Jet Theme , 1984 .

[57]  M. Mann,et al.  Electrospray Ionization for Mass Spectrometry of Large Biomolecules , 1990 .

[58]  Xiaohui S. Xie,et al.  A Mammalian Organelle Map by Protein Correlation Profiling , 2006, Cell.

[59]  Michael L. Gatza,et al.  Proteogenomics connects somatic mutations to signaling in breast cancer , 2016, Nature.

[60]  Brendan MacLean,et al.  Building high-quality assay libraries for targeted analysis of SWATH MS data , 2015, Nature Protocols.

[61]  Jens M. Rick,et al.  Quantitative mass spectrometry in proteomics: a critical review , 2007, Analytical and bioanalytical chemistry.

[62]  M. Gorenstein,et al.  Quantitative proteomic analysis by accurate mass retention time pairs. , 2005, Analytical chemistry.

[63]  Edward L. Huttlin,et al.  The BioPlex Network: A Systematic Exploration of the Human Interactome , 2015, Cell.

[64]  Brian Burke,et al.  A promiscuous biotin ligase fusion protein identifies proximal and interacting proteins in mammalian cells , 2012, The Journal of cell biology.

[65]  David L. Tabb,et al.  Performance Metrics for Liquid Chromatography-Tandem Mass Spectrometry Systems in Proteomics Analyses* , 2009, Molecular & Cellular Proteomics.

[66]  Derek J. Bailey,et al.  Parallel Reaction Monitoring for High Resolution and High Mass Accuracy Quantitative, Targeted Proteomics* , 2012, Molecular & Cellular Proteomics.

[67]  Jarrett D. Egertson,et al.  Multiplexed MS/MS for Improved Data Independent Acquisition , 2013, Nature Methods.

[68]  B. Simons,et al.  Performance characteristics of a new hybrid quadrupole time-of-flight tandem mass spectrometer (TripleTOF 5600). , 2011, Analytical chemistry.

[69]  B. Domon,et al.  Targeted Proteomic Quantification on Quadrupole-Orbitrap Mass Spectrometer* , 2012, Molecular & Cellular Proteomics.

[70]  R. Aebersold,et al.  Selected reaction monitoring–based proteomics: workflows, potential, pitfalls and future directions , 2012, Nature Methods.

[71]  J. Hopfield,et al.  From molecular to modular cell biology , 1999, Nature.

[72]  S. Gygi,et al.  Absolute quantification of proteins and phosphoproteins from cell lysates by tandem MS , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[73]  Ludovic C. Gillet,et al.  Quantifying protein interaction dynamics by SWATH mass spectrometry: application to the 14-3-3 system , 2013, Nature Methods.

[74]  Eric W. Deutsch,et al.  A complete mass-spectrometric map of the yeast proteome applied to quantitative trait analysis , 2013, Nature.

[75]  R. Aebersold,et al.  Analysis of protein complexes using mass spectrometry , 2007, Nature Reviews Molecular Cell Biology.

[76]  Oliver M. Bernhardt,et al.  Reproducible and Consistent Quantification of the Saccharomyces cerevisiae Proteome by SWATH-mass spectrometry* , 2015, Molecular & Cellular Proteomics.

[77]  Ruedi Aebersold,et al.  The Structural Basis of Substrate Recognition by the Eukaryotic Chaperonin TRiC/CCT , 2014, Cell.

[78]  M. Mann,et al.  Super-SILAC mix for quantitative proteomics of human tumor tissue , 2010, Nature Methods.

[79]  Yasset Perez-Riverol,et al.  A multi-center study benchmarks software tools for label-free proteome quantification , 2016, Nature Biotechnology.

[80]  J. Fenn,et al.  Negative ion production with the electrospray ion source , 1984 .

[81]  Evan G. Williams,et al.  Multilayered Genetic and Omics Dissection of Mitochondrial Activity in a Mouse Reference Population , 2014, Cell.