Quantum Walks of a Phonon in Trapped Ions.

We report the observation of the quantum walks of a phonon, a vibrational quantum, in a trapped-ion crystal. By employing the capability to prepare and observe the localized wave packet of a phonon, the propagation of a single radial local phonon in a four-ion linear crystal is observed with single-site resolution. The results show an agreement with numerical calculations, indicating the predictability and reproducibility of the phonon system. These characteristics may contribute advantageously in the advanced studies of quantum walks, as well as boson sampling and quantum simulation.

[1]  Shi-Liang Zhu,et al.  Trapped ion quantum computation with transverse phonon modes. , 2006, Physical review letters.

[2]  D. James Quantum dynamics of cold trapped ions with application to quantum computation , 1997, quant-ph/9702053.

[3]  R. Blatt,et al.  Trapped-ion antennae for the transmission of quantum information , 2010, Nature.

[4]  Shuming Chen,et al.  Design Optimization for Anharmonic Linear Surface-Electrode Ion Trap , 2014 .

[5]  Zach DeVito,et al.  Opt , 2017 .

[6]  H. Häffner,et al.  Energy transport in trapped ion chains , 2013, 1312.5786.

[7]  Jingning Zhang,et al.  Experimental test of the quantum Jarzynski equality with a trapped-ion system , 2014, Nature Physics.

[8]  Matthew Rispoli,et al.  Strongly correlated quantum walks in optical lattices , 2014, Science.

[9]  J Glueckert,et al.  Quantum walk of a trapped ion in phase space. , 2009, Physical review letters.

[10]  D. Matsukevich,et al.  Cross-Kerr Nonlinearity for Phonon Counting. , 2017, Physical review letters.

[11]  M. Fleischhauer,et al.  Simulation of a quantum phase transition of polaritons with trapped ions , 2009, 0905.2593.

[12]  A. Bermudez,et al.  Synthetic gauge fields for vibrational excitations of trapped ions. , 2011, Physical review letters.

[13]  S. Debnath,et al.  Demonstration of a small programmable quantum computer with atomic qubits , 2016, Nature.

[14]  Andrew M. Childs,et al.  Universal Computation by Multiparticle Quantum Walk , 2012, Science.

[15]  P. Knight,et al.  Optical Cavity Implementations of the Quantum Walk , 2003, quant-ph/0305165.

[16]  K. Brown,et al.  Coupled quantized mechanical oscillators , 2010, Nature.

[17]  E. Farhi,et al.  Quantum computation and decision trees , 1997, quant-ph/9706062.

[18]  W. Marsden I and J , 2012 .

[19]  F. Schmidt-Kaler,et al.  Precision measurement and compensation of optical stark shifts for an ion-trap quantum processor. , 2002, Physical review letters.

[20]  C. Monroe,et al.  Observation of Hopping and Blockade of Bosons in a Trapped Ion Spin Chain. , 2017, Physical review letters.

[21]  Franco Nori,et al.  Strongly correlated quantum walks with a 12-qubit superconducting processor , 2019, Science.

[22]  M. Kim,et al.  Simulation of quantum random walks using the interference of a classical field , 2003, quant-ph/0305008.

[23]  J. Cirac,et al.  Goals and opportunities in quantum simulation , 2012, Nature Physics.

[24]  P. Knight,et al.  Quantum walk on the line as an interference phenomenon , 2003, quant-ph/0304201.

[25]  Pingxing Chen,et al.  Creating equally spaced linear ion string in a surface-electrode trap by feedback control , 2017 .

[26]  R. Blatt,et al.  Realization of a quantum walk with one and two trapped ions. , 2009, Physical review letters.

[27]  Aharonov,et al.  Quantum random walks. , 1993, Physical review. A, Atomic, molecular, and optical physics.

[28]  D Porras,et al.  Bose-Einstein condensation and strong-correlation behavior of phonons in ion traps. , 2004, Physical review letters.

[29]  David Leibrandt,et al.  Suppression of heating rates in cryogenic surface-electrode ion traps. , 2007, Physical review letters.

[30]  Salvador Elías Venegas-Andraca,et al.  Quantum walks: a comprehensive review , 2012, Quantum Information Processing.

[31]  Atsushi Noguchi,et al.  Hong–Ou–Mandel interference of two phonons in trapped ions , 2015, Nature.

[32]  Antoine Browaeys,et al.  Single-Atom Trapping in Holographic 2D Arrays of Microtraps with Arbitrary Geometries , 2014, 1402.5329.

[33]  Antonio-José Almeida,et al.  NAT , 2019, Springer Reference Medizin.

[34]  H. Häffner,et al.  Local probe of single phonon dynamics in warm ion crystals , 2016, Nature Communications.

[35]  M. Johanning,et al.  Isospaced linear ion strings , 2016, Applied Physics B.

[36]  C. Monroe,et al.  Large-scale quantum computation in an anharmonic linear ion trap , 2009, 0901.0579.

[37]  Dirk Bouwmeester,et al.  Optical Galton board , 1999 .

[38]  D. Matsukevich,et al.  Quantum Parametric Oscillator with Trapped Ions. , 2015, Physical review letters.

[39]  A. Politi,et al.  Quantum Walks of Correlated Photons , 2010, Science.

[40]  K. Toyoda,et al.  Experimental realization of a quantum phase transition of polaritonic excitations. , 2013, Physical review letters.

[41]  T. Monz,et al.  Cryogenic setup for trapped ion quantum computing. , 2016, The Review of scientific instruments.

[42]  A. Bermudez,et al.  Photon-assisted-tunneling toolbox for quantum simulations in ion traps , 2012, 1201.3287.

[43]  T. Schaetz,et al.  Interference in a Prototype of a Two-Dimensional Ion Trap Array Quantum Simulator. , 2018, Physical review letters.

[44]  C. Monroe,et al.  Cryogenic trapped-ion system for large scale quantum simulation , 2018, Quantum Science and Technology.

[45]  L. Duan,et al.  Scalable implementation of boson sampling with trapped ions. , 2013, Physical review letters.

[46]  Observation of phonon hopping in radial vibrational modes of trapped ions , 2012 .

[47]  Roberto Morandotti,et al.  Realization of quantum walks with negligible decoherence in waveguide lattices. , 2007, Physical review letters.

[48]  Andrew M. Childs,et al.  Universal computation by quantum walk. , 2008, Physical review letters.