Impact of a strongly first-order phase transition on the abundance of thermal relics

We study the impact of a strongly first-order electroweak phase transition on the thermal relic abundance of particle species that could constitute the dark matter and that decoupled before the phase transition occurred. We define a dilution factor induced by generic first-order phase transitions, and we explore the parameter space of the minimal supersymmetric extension to the standard model to determine which phase transition temperatures and dilution factors are relevant for the lightest neutralino as a dark matter candidate. We then focus on a specific toy-model setup that could give rise to a strongly first-order electroweak phase transition, and proceed to a detailed calculation of dilution factors and transition temperatures, comparing our findings to actual neutralino dark matter models. Typical models that would produce an excessive thermal relic density and that can be salvaged postulating a strongly first-order electroweak phase transition include massive (multi-TeV) wino or Higgsino-like neutralinos, as well as binolike neutralinos in a wider mass range, with masses as low as 400 GeV. If LHC data indicate an inferred thermal neutralino relic abundance larger than the cold dark matter density, the mismatch could thus potentially be explained by electroweak-scale physics that will also be thoroughly explored with collidermore » experiments in the near future.« less

[1]  M. Carena,et al.  Improved Results in Supersymmetric Electroweak Baryogenesis , 2002, hep-ph/0208043.

[2]  H. Haber,et al.  Multi-scalar models with a high-energy scale☆ , 1990 .

[3]  The minimal model of nonbaryonic dark matter: A singlet scalar , 2000, hep-ph/0011335.

[4]  J. McDonald Thermally generated gauge singlet scalars as self-interacting dark matter. , 2001, Physical review letters.

[5]  A. Ashoorioon,et al.  Strong electroweak phase transitions without collider traces , 2009, 0904.0353.

[6]  M. Fukugita,et al.  Quark soup: do not boil , 1991, Nature.

[7]  J. Espinosa,et al.  Novel Effects in Electroweak Breaking from a Hidden Sector , 2007, hep-ph/0701145.

[8]  Donal O'Connell,et al.  Minimal extension of the standard model scalar sector , 2007 .

[9]  L. Hall,et al.  Electroweak phase transition and baryogenesis. , 1992, Physical review. D, Particles and fields.

[10]  J. Espinosa,et al.  Some cosmological implications of hidden sectors , 2008, 0809.3215.

[11]  Stefano Profumo,et al.  SUSY dark matter and quintessence , 2003 .

[12]  S. Coleman The Fate of the False Vacuum. 1. Semiclassical Theory , 1977 .

[13]  R. Rattazzi,et al.  Theories with Gauge-Mediated Supersymmetry Breaking , 1998, hep-ph/9801271.

[14]  K. Hamaguchi,et al.  Nonthermal dark matter via Affleck-Dine baryogenesis and its detection possibility , 2002, hep-ph/0205044.

[15]  Kurunathan Ratnavelu,et al.  FRONTIERS IN PHYSICS , 2009 .

[16]  H. Kurki-Suonio,et al.  Growth of bubbles in cosmological phase transitions. , 1993, Physical review. D, Particles and fields.

[17]  Determination of Dark Matter Properties at High-Energy Colliders , 2006, hep-ph/0602187.

[18]  Collisional dark matter and scalar phantoms , 2001, hep-ph/0105284.

[19]  D. Hooper,et al.  Heavy dark matter through the Higgs portal , 2008, 0801.3440.

[20]  The ubiquitous throat , 2006, hep-th/0607120.

[21]  Mcdonald Gauge singlet scalars as cold dark matter. , 1994, Physical review. D, Particles and fields.

[22]  Pierre Salati Quintessence and the relic density of neutralinos , 2003 .

[23]  Lyth,et al.  Thermal inflation and the moduli problem. , 1995, Physical review. D, Particles and fields.

[24]  Baryogenesis, electric dipole moments and dark matter in the MSSM , 2006, hep-ph/0603246.

[25]  K. Griest,et al.  Supersymmetric dark matter , 1992 .

[26]  A. Mégevand,et al.  Supercooling and phase coexistence in cosmological phase transitions , 2007, 0712.1031.

[27]  Curtis G. Callan,et al.  Fate of the false vacuum. II. First quantum corrections , 1977 .

[28]  Implications of Abelian extended gauge structures from string models. , 1995, Physical review. D, Particles and fields.

[29]  Graciela B. Gelmini,et al.  Cosmic abundances of stable particles: Improved analysis , 1991 .

[30]  M. Seco,et al.  MSSM electroweak baryogenesis and flavour mixing in transport equations , 2005, hep-ph/0505103.

[31]  G. Kribs,et al.  Four generations, the electroweak phase transition, and supersymmetry , 2008, 0803.4207.

[32]  Gabe Shaughnessy,et al.  Singlet Higgs phenomenology and the electroweak phase transition , 2007, 0705.2425.

[33]  Edward J. Wollack,et al.  FIVE-YEAR WILKINSON MICROWAVE ANISOTROPY PROBE * OBSERVATIONS: COSMOLOGICAL INTERPRETATION , 2008, 0803.0547.

[34]  Lisa Randall,et al.  Wino cold dark matter from anomaly mediated SUSY breaking , 2000 .

[35]  James D. Wells,et al.  Minimal spontaneously broken hidden sector and its impact on Higgs boson physics at the CERN Large Hadron Collider , 2005 .

[36]  Andrei Linde Fate of the false vacuum at finite temperature: Theory and applications , 1981 .

[37]  Yanou Cui,et al.  Narrow trans-TeV Higgs bosons and H→hh decays: two LHC search paths for a hidden sector Higgs boson , 2007 .

[38]  A. Wulzer,et al.  A Confining Strong First-Order Electroweak Phase Transition , 2007, 0706.3388.

[39]  Paul Langacker,et al.  CERN LHC phenomenology of an extended standard model with a real scalar singlet , 2007, 0706.4311.

[40]  Paolo Gondolo,et al.  Effect of a late decaying scalar on the neutralino relic density , 2006 .

[41]  S. Coleman,et al.  Erratum: Fate of the false vacuum: semiclassical theory , 1977 .

[42]  J. Espinosa,et al.  Complete Two-loop Dominant Corrections to the Mass of the Lightest CP-even Higgs Boson in the Minimal Supersymmetric Standard Model , 2000, hep-ph/0003246.

[43]  L. Bergstrom,et al.  DarkSUSY: Computing Supersymmetric Dark Matter Properties Numerically , 2004 .

[44]  M. Halpern,et al.  FIVE-YEAR WILKINSON MICROWAVE ANISOTROPY PROBE OBSERVATIONS: LIKELIHOODS AND PARAMETERS FROM THE WMAP DATA , 2008, 0803.0586.

[45]  Alessandro Strumia,et al.  Minimal Dark Matter , 2006 .

[46]  H. Baer Weak scale supersymmetry , 2006 .

[47]  Stefano Profumo,et al.  Statistical analysis of supersymmetric dark matter in the minimal supersymmetric standard model after WMAP , 2004 .