Independence of the unimodal tuning of firing rate from theta phase precession in hippocampal place cells

There are two prominent features for place cells in rat hippocampus. The firing rate remarkably increases when rat enters the cell’s place field and reaches a maximum around the center of place field, and it decreases when the animal approaches the end of the place field. Simultaneously the spikes gradually and monotonically advance to earlier phase relative to hippocampal theta rhythm as the rat traverses along the cell’s place field, known as temporal coding. In this paper, we investigate whether two main characteristics of place cell firing are independent or not by mainly focusing on the generation mechanism of the unimodal tuning of firing rate by using a reduced CA1 two-compartment neuron model. Based on recent evidences, we hypothesize that the coupling of dendritic with the somatic compartment is not constant but dynamically regulated as the animal moves further along the place field, in contrast to previous two-compartment modeling. Simulations show that the regulable coupling is critically responsible for the generation of unimodal firing rate profile in place cells, independent of phase precession. Predictions of our model accord well with recent observations like occurrence of phase precession with very low as well as high firing rate (Huxter et al. Nature 425:828–832, 2003) and persistency of phase precession after transient silence of hippocampus activity (Zugaro et al. Nat Neurosci 8:67–71, 2005.

[1]  D. Johnston,et al.  K+ channel regulation of signal propagation in dendrites of hippocampal pyramidal neurons , 1997, Nature.

[2]  Rafael Yuste,et al.  Ca2+ accumulations in dendrites of neocortical pyramidal neurons: An apical band and evidence for two functional compartments , 1994, Neuron.

[3]  D. Tank,et al.  Intracellular dynamics of hippocampal place cells during virtual navigation , 2009, Nature.

[4]  Arne D. Ekstrom,et al.  NMDA Receptor Antagonism Blocks Experience-Dependent Expansion of Hippocampal “Place Fields” , 2001, Neuron.

[5]  A Bose,et al.  Phase precession and phase‐locking of hippocampal pyramidal cells , 2001, Hippocampus.

[6]  Lyle J. Graham,et al.  Complementary Theta Resonance Filtering by Two Spatially Segregated Mechanisms in CA1 Hippocampal Pyramidal Neurons , 2009, The Journal of Neuroscience.

[7]  M. Moser,et al.  Representation of Geometric Borders in the Entorhinal Cortex , 2008, Science.

[8]  G. Buzsáki,et al.  Theta oscillations in somata and dendrites of hippocampal pyramidal cells in vivo: Activity‐dependent phase‐precession of action potentials , 1998, Hippocampus.

[9]  D. P. Artemenko Role of hippocampal neurons in theta-wave generation , 2005, Neurophysiology.

[10]  G. Buzsáki,et al.  Intracellular correlates of hippocampal theta rhythm in identified pyramidal cells, granule cells, and basket cells , 1995, Hippocampus.

[11]  J. O’Keefe,et al.  Dual phase and rate coding in hippocampal place cells: Theoretical significance and relationship to entorhinal grid cells , 2005, Hippocampus.

[12]  Michael Recce,et al.  A Temporal Mechanism for Generating the Phase Precession of Hippocampal Place Cells , 2000, Journal of Computational Neuroscience.

[13]  Lai-Wo S. Leung,et al.  Intracellular records of theta rhythm in hippocampal CA1 cells of the rat , 1986, Brain Research.

[14]  J. O’Keefe,et al.  Modeling place fields in terms of the cortical inputs to the hippocampus , 2000, Hippocampus.

[15]  S. Fox Membrane potential and impedance changes in hippocampal pyramidal cells during theta rhythm , 2004, Experimental Brain Research.

[16]  M. Quirk,et al.  Experience-Dependent Asymmetric Shape of Hippocampal Receptive Fields , 2000, Neuron.

[17]  B. McNaughton,et al.  Theta phase precession in hippocampal neuronal populations and the compression of temporal sequences , 1996, Hippocampus.

[18]  Nace L. Golding,et al.  Dendritic Sodium Spikes Are Variable Triggers of Axonal Action Potentials in Hippocampal CA1 Pyramidal Neurons , 1998, Neuron.

[19]  B. Sakmann,et al.  Dendritic mechanisms underlying the coupling of the dendritic with the axonal action potential initiation zone of adult rat layer 5 pyramidal neurons , 2001, The Journal of physiology.

[20]  G. Buzsáki Theta Oscillations in the Hippocampus , 2002, Neuron.

[21]  John O'Keefe,et al.  Independent rate and temporal coding in hippocampal pyramidal cells , 2003, Nature.

[22]  N. Bogdanovic,et al.  Localization of M1 Muscarinic Receptors in Rat Brain Using Selective Muscarinic Toxin-1 , 1997, Brain Research Bulletin.

[23]  J. Magee Dendritic mechanisms of phase precession in hippocampal CA1 pyramidal neurons. , 2001, Journal of neurophysiology.

[24]  M. R. Mehta,et al.  Role of experience and oscillations in transforming a rate code into a temporal code , 2002, Nature.

[25]  Xiaojing Wang,et al.  Analysis of complex bursting in cortical pyramidal neuron models , 2000, Neurocomputing.

[26]  B. McNaughton,et al.  The contributions of position, direction, and velocity to single unit activity in the hippocampus of freely-moving rats , 2004, Experimental Brain Research.

[27]  D. Johnston,et al.  Neuromodulation of dendritic action potentials. , 1999, Journal of neurophysiology.

[28]  J. O’Keefe,et al.  Boundary Vector Cells in the Subiculum of the Hippocampal Formation , 2009, The Journal of Neuroscience.

[29]  Daniel Johnston,et al.  Regulation of back-propagating action potentials in hippocampal neurons , 1999, Current Opinion in Neurobiology.

[30]  A Bose,et al.  Neural mechanisms for generating rate and temporal codes in model CA3 pyramidal cells. , 2001, Journal of neurophysiology.

[31]  Nace L. Golding,et al.  Compartmental Models Simulating a Dichotomy of Action Potential Backpropagation in Ca1 Pyramidal Neuron Dendrites , 2001, Journal of neurophysiology.

[32]  N. Spruston,et al.  Conditional dendritic spike propagation following distal synaptic activation of hippocampal CA1 pyramidal neurons , 2005, Nature Neuroscience.

[33]  E. Kandel,et al.  ELECTROPHYSIOLOGY OF HIPPOCAMPAL NEURONS: IV. FAST PREPOTENTIALS. , 1961, Journal of neurophysiology.

[34]  K. I. Blum,et al.  Experience-Dependent Changes in Extracellular Spike Amplitude May Reflect Regulation of Dendritic Action Potential Back-Propagation in Rat Hippocampal Pyramidal Cells , 2001, The Journal of Neuroscience.

[35]  J. Magee Dendritic Hyperpolarization-Activated Currents Modify the Integrative Properties of Hippocampal CA1 Pyramidal Neurons , 1998, The Journal of Neuroscience.

[36]  John Rinzel,et al.  Intrinsic and network rhythmogenesis in a reduced traub model for CA3 neurons , 1995, Journal of Computational Neuroscience.

[37]  J. Magee,et al.  On the Initiation and Propagation of Dendritic Spikes in CA1 Pyramidal Neurons , 2004, The Journal of Neuroscience.

[38]  Giorgio A Ascoli,et al.  Signal propagation in oblique dendrites of CA1 pyramidal cells. , 2005, Journal of neurophysiology.

[39]  B. McNaughton,et al.  Bimodality of theta phase precession in hippocampal place cells in freely running rats. , 2002, Journal of neurophysiology.

[40]  G. Buzsáki,et al.  Spike train dynamics predicts theta-related phase precession in hippocampal pyramidal cells , 2002, Nature.

[41]  G. Buzsáki,et al.  Spike phase precession persists after transient intrahippocampal perturbation , 2005, Nature Neuroscience.

[42]  Xiao-Jing Wang,et al.  Bursting Neurons Signal Input Slope , 2002, The Journal of Neuroscience.

[43]  Máté Lengyel,et al.  Theta oscillation‐coupled dendritic spiking integrates inputs on a long time scale , 2005, Hippocampus.

[44]  M. Lengyel,et al.  Dynamically detuned oscillations account for the coupled rate and temporal code of place cell firing , 2003, Hippocampus.

[45]  Neil Burgess,et al.  Predictions derived from modelling the hippocampal role in navigation , 2000, Biological Cybernetics.

[46]  James N. Davis,et al.  Beta‐adrenergic receptors in the hippocampal and retrohippocampal regions of rats and guinea pigs: Autoradiographic and immunohistochemical studies , 1993, Synapse.

[47]  S. Hoffman,et al.  Funding for malaria genome sequencing , 1997, Nature.

[48]  T. Sejnowski,et al.  [Letters to nature] , 1996, Nature.

[49]  N. Spruston Pyramidal neurons: dendritic structure and synaptic integration , 2008, Nature Reviews Neuroscience.

[50]  T. Hafting,et al.  Hippocampus-independent phase precession in entorhinal grid cells , 2008, Nature.

[51]  C. Colbert,et al.  Subthreshold inactivation of Na+ and K+ channels supports activity-dependent enhancement of back-propagating action potentials in hippocampal CA1. , 2001, Journal of neurophysiology.

[52]  J. O’Keefe,et al.  Phase relationship between hippocampal place units and the EEG theta rhythm , 1993, Hippocampus.

[53]  Yoko Yamaguchi,et al.  A theory of hippocampal memory based on theta phase precession , 2003, Biological Cybernetics.

[54]  J. O’Keefe,et al.  An oscillatory interference model of grid cell firing , 2007, Hippocampus.

[55]  Y. Yamaguchi,et al.  A unified view of theta-phase coding in the entorhinal–hippocampal system , 2007, Current Opinion in Neurobiology.